Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Meta Platforms, Inc.
paulmck @kernel.org

December 18, 2025
Release v2025.12.18a

mailto:paulmck@kernel.org

Legal Statement

This work represents the views of the editor and the authors and does not
necessarily represent the view of their respective employers.

Trademarks:

* IBM, z Systems, and PowerPC are trademarks or registered trademarks
of International Business Machines Corporation in the United States,
other countries, or both.

* Linux is a registered trademark of Linus Torvalds.

e Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel
Corporation or its subsidiaries in the United States, other countries,
or both.

e Arm is a registered trademark of Arm Limited (or its subsidiaries) in
the US and/or elsewhere.

* SPARC is a registered trademark of SPARC International, Inc. Prod-
ucts bearing SPARC trademarks are based on an architecture devel-
oped by Sun Microsystems, Inc.

e Other company, product, and service names may be trademarks or
service marks of such companies.

The non-source-code text and images in this document are provided
under the terms of the Creative Commons Attribution-Share Alike 3.0
United States license.! In brief, you may use the contents of this document
for any purpose, personal, commercial, or otherwise, so long as attribution
to the authors is maintained. Likewise, the document may be modified,
and derivative works and translations made available, so long as such
modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

! https://creativecommons.org/licenses/by-sa/3.0/us/

https://creativecommons.org/licenses/by-sa/3.0/us/

1
Source code is covered by various versions of the GPL.> Some of this
code is GPLv2-only, as it derives from the Linux kernel, while other code
is GPLv2-or-later. See the comment headers of the individual source files
within the CodeSamples directory in the git archive® for the exact licenses.
If you are unsure of the license for a given code fragment, you should assume
GPLv2-only.
Combined work © 2005-2025 by Paul E. McKenney. Each individual
contribution is copyright by its contributor at the time of contribution, as
recorded in the git archive.

2 https://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git

https://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book

1.1 Roadmap
1.2 Quick Quizzes
1.3 Alternativesto ThisBook
1.4 Sample SourceCode
1.5 VideoResources
1.6 Whose BookIs This?

2

Introduction

2.1 Historic Parallel Programming Difficulties
2.2 Parallel Programming Goals

2.2.1
222
223

Performance
Productivity
Generality

2.3 Alternatives to Parallel Programming

2.3.1
232
233

Multiple Instances of a Sequential Application .
Use Existing Parallel Software
Performance Optimization

2.4 What Makes Parallel Programming Hard?

24.1
24.2
243
244
245
24.6
24.7

Work Partitioning
Parallel Access Control
Resource Partitioning and Replication
Interacting With Hardware
Composite Capabilities
Existing Sequential Designs
How Do Languages and Environments Assist With
These Tasks?

2.5 Discussion.

iii

S O 00 N KN =

14

17
18
20
22
26
27
27
28
29
30
32
32
34
35
35

36
36

3 Hardware and its Habits

3.1

32

33

34

OVerview o i
3.1.1 PipelinedCPUs
3.1.2 Memory References
3.1.3 Atomic Operations
3.14 MemoryBarriers,
3.1.5 Functional Unit Failings
3.1.6 Thermal Throttling
3.1.7 CacheMisses
3.1.8 I/OOperations
Overheads
3.2.1 Hardware System Architecture
3.2.2 Costsof Operations
3.2.3 Hardware Optimizations
Hardware Free Lunch?
3.3.1 Novel Materials and Processes
332 Light,NotElectrons
333 3DIntegration
3.3.4 Special-Purpose Accelerators
3.3.5 Existing Parallel Software
Software Design Implications

4 Tools of the Trade

4.1
4.2

4.3

Scripting Languages
POSIX Multiprocessing
4.2.1 POSIX Process Creation and Destruction
4.2.2 POSIX Thread Creation and Destruction

423 POSIXLocking
424 POSIX Reader-Writer Locking
4.2.5 Atomic Operations (GCC Classic)
4.2.6 Atomic Operations (C11)
4.2.7 Atomic Operations (Modern GCC)
4.2.8 PerThread Variables
Alternatives to POSIX Operations
4.3.1 Organization and Initialization

38
38
39
43
43
45
47
48
49
50
52
52
55
60
62
64
64
65
66
68
68

71
71
73
73
76
78
83
87
89
90
90
91
91

4.3.2 Thread Creation, Destruction, and Control ..
433 Locking
4.3.4 Accessing Shared Variables
4.3.5 AtomicOperations
43.6 Per-CPU Variables

4.4 The Right Tool for the Job: How to Choose?
Counting
5.1 Why Isn’t Concurrent Counting Trivial?
5.2 Statistical Counters
52.1 Design
5.2.2 Array-Based Implementation
5.2.3 Per-Thread-Variable-Based Implementation . . .
5.24 Eventually Consistent Implementation
525 Discussion
5.3 Approximate Limit Counters
53.1 Design
5.3.2 Simple Limit Counter Implementation
5.3.3 Simple Limit Counter Discussion
5.3.4 Approximate Limit Counter Implementation
5.3.5 Approximate Limit Counter Discussion
54 ExactLimitCounters
5.4.1 Atomic Limit Counter Implementation
5.4.2 Atomic Limit Counter Discussion
5.4.3 Signal-Theft Limit Counter Design
5.4.4 Signal-Theft Limit Counter Implementation . . .
5.4.5 Signal-Theft Limit Counter Discussion
5.4.6 Applying Exact Limit Counters
5.5 Parallel Counting Discussion

5.5.1 Parallel Counting Validation
5.5.2 Parallel Counting Performance
5.5.3 Parallel Counting Specializations
5.5.4 Parallel Counting Lessons

6 Partitioning and Synchronization Design

6.1 Partitioning Exercises
6.1.1 Dining Philosophers Problem
6.1.2 Double-Ended Queue
6.1.3 Partitioning Example Discussion
6.2 DesignCriteria
6.3 Synchronization Granularity
6.3.1 Sequential Program
6.3.2 CodeLocking
6.3.3 Datalocking
6.34 DataOwnership
6.3.5 Locking Granularity and Performance
6.4 Parallel Fastpath
6.4.1 Reader/Writer Locking
6.4.2 Hierarchical Locking
6.4.3 Resource Allocator Caches
6.5 Beyond Partitioning 0oL
6.5.1 Work-Queue Parallel Maze Solver
6.5.2 Alternative Parallel Maze Solver
6.5.3 Maze Validation
6.54 Performance ComparisonI
6.5.5 Alternative Sequential Maze Solver
6.5.6 Performance ComparisonIl
6.5.7 Future Directions and Conclusions
6.6 Partitioning, Parallelism, and Optimization.
7 Locking
7.1 Staying Alive
7.1.1 Deadlock
7.1.2 Livelock and Starvation
7.1.3 Unfairness
7.1.4 Inefficiency
7.2 TypesofLocks

721 ExclusiveLocks
7.2.2 Reader-WriterLocks

172
173
173
177
189
190
194
194
197
200
203
204
209
210
212
212
221
222
225
228
229
233
234
236
237

7.2.3 Beyond Reader-Writer Locks 265

7.2.4 Scoped Locking 267
7.3 Locking Implementation Issues 271
7.3.1 Sample Exclusive-Locking Implementation Based
on Atomic Exchange 271
7.3.2 Other Exclusive-Locking Implementations . . . 272
7.4 Lock-Based Existence Guarantees 277
7.5 Locking: Hero or Villain? 280
7.5.1 Locking For Applications: Hero! 280
7.5.2 Locking For Parallel Libraries: Just Another Tool 281
7.5.3 Locking For Parallelizing Sequential Libraries: Vil-
lain! L 286
7.6 Summary 290
Data Ownership 291
8.1 Multiple Processes 292
8.2 Partial Data Ownership and pthreads 293
83 Function Shipping 294
8.4 Designated Thread 295
8.5 Privatization 295
8.6 Other Uses of Data Ownership 297
Deferred Processing 299
9.1 Running Example 300
9.2 Reference Counting 303
9.3 HazardPointers 308
94 Sequencelocks 318
9.5 Read-Copy Update (RCU) 325
9.5.1 IntroductiontoRCU 327
9.5.2 RCU Fundamentals 342
9.5.3 RCU Linux-Kernel API 356
954 RCUUsage. 378
9.55 RCURelatedWork 415
9.6 WhichtoChoose? 422
9.6.1 Which to Choose? (Overview) 422

9.6.2 Which to Choose? (Details) 425

10

Data Structures
10.1 Motivating Application
10.2 Partitionable Data Structures
10.2.1 Hash-Table Design
10.2.2 Hash-Table Implementation
10.2.3 Hash-Table Performance
10.3 Read-Mostly Data Structures
10.3.1 RCU-Protected Hash Table Implementation . . .
10.3.2 RCU-Protected Hash Table Validation
10.3.3 RCU-Protected Hash Table Performance ..
10.3.4 RCU-Protected Hash Table Discussion
10.4 Non-Partitionable Data Structures
10.4.1 Resizable Hash Table Design
10.4.2 Resizable Hash Table Implementation
10.4.3 Resizable Hash Table Discussion
10.4.4 Other Resizable Hash Tables
10.5 Other Data Structures
10.6 Summary

11 Validation

11.1 Introduction
11.1.1 Where Do Bugs Come From?
11.1.2 Required Mindset
11.1.3 When Should Validation Start?
11.1.4 The Open Source Way

11.2 Tracing oo it

11.3 Assertions

11.4 Static Analysis

115 CodeReview
11.5.1 Imspection
11.5.2 Walkthroughs
11.5.3 Self-Inspection

11.6 Probability and Heisenbugs

429
431

433
434
435
435
436
439
444
444
446
447
454
456
456
459
469
471
476
478

11.7

11.8

11.6.1 Statistics for Discrete Testing
11.6.2 Statistics Abuse for Discrete Testing
11.6.3 Statistics for Continuous Testing
11.6.4 Hunting Heisenbugs
Performance Estimation
11.7.1 Benchmarking
1172 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 Isolation
11.7.6 Detecting Interference
Summary

12 Formal Verification

12.1

12.2

12.3

12.4
12.5
12.6
12.7

State-Space Search
12.1.1 Promelaand Spin
12.1.2 HowtoUsePromela
12.1.3 Promela Example: Locking
12.1.4 Promela Example: QRCU
12.1.5 Promela Parable: dynticks and Preemptible RCU
12.1.6 Validating Preemptible RCU and dynticks
Special-Purpose State-Space Search
12.2.1 Anatomy of aLitmus Test

12.2.3 RunningaLitmus Test
12.24 PPCMEM Discussion
Axiomatic Approaches
12.3.1 Axiomatic Approaches and Locking
12.3.2 Axiomatic Approachesand RCU
SAT Solvers
Stateless Model Checkers
Summary
Choosing a ValidationPlan

531
532
532
536
544
546
559
567
598
599
601

13 Putting It All Together 625

13.1

13.2

133

13.4

13.5

13.6

Counter Conundrums 625
13.1.1 Counting Updates 626
13.1.2 Counting Lookups 626
Refurbish Reference Counting 627
13.2.1 Implementation of Reference-Counting Categories 630
13.2.2 Counter Optimizations 637
Hazard-Pointer Helpers 638
13.3.1 Scalable Reference Count 638
13.3.2 Long-Duration Accesses 638
Sequence-Locking Specials 639
13.4.1 Dueling Sequence Locks 639
13.4.2 Correlated Data Elements 640
13.43 AtomicMove 641
13.4.4 Upgradeto Writer 643
RCURescues 644
13.5.1 RCU and Per-Thread-Variable-Based Statistical
Counters 644
13.5.2 RCU and Counters for Removable I/O Devices . 648
1353 ArrayandLength 649
13.5.4 Correlated Fields 651
13.5.5 Update-Friendly Traversal 652
13.5.6 Scalable Reference Count Two 653
13.5.7 Retriggered Grace Periods 654
13.5.8 Long-Duration Accesses Two 656
13.5.9 Lockless Configuration Update 659
13.5.10 Lockless Double-Checked Locking 661
13.5.11 Lockless Double-Checked Initialization 663
Micro-Optimization 665
13.6.1 Specialization 666
13.6.2 BitsandBytes 667

13.6.3 Hardware Considerations 668

xi

14 Advanced Synchronization 671

14.1 AvoidingLocks 671
14.2 Non-Blocking Synchronization 672
142.1 SimpleNBS 674
14.2.2 Applicability of NBS Benefits 679
1423 NBSDiscussion 686
14.3 Parallel Real-Time Computing 687
14.3.1 What is Real-Time Computing? 688
14.3.2 Who Needs Real-Time? 697
14.3.3 Who Needs Parallel Real-Time? 698
14.3.4 Implementing Parallel Real-Time Systems . .. 700
14.3.5 Implementing Parallel Real-Time Operating Sys-
ems 702
14.3.6 Implementing Parallel Real-Time Applications . 724
14.3.7 Real Time vs. Real Fast: How to Choose? 731
15 Advanced Synchronization: Memory Ordering 733
15.1 Memory-Model Intuitions 734
15.1.1 Transitive Intuitions 735
15.1.2 Rulesof Thumb 742
15.2 Ordering: Why and How? 746
15.2.1 Why Hardware Misordering? 748
15.2.2 How to Force Ordering? 752
15.2.3 BasicRulesof Thumb 756
153 Tricksand Traps 759
15.3.1 Variables With Multiple Values 760
15.3.2 Memory-Reference Reordering 764
15.3.3 Address Dependencies 768
15.3.4 DataDependencies 771
15.3.5 Control Dependencies 773
15.3.6 Cache Coherence 774
15.3.7 Multicopy Atomicity 776
15.3.8 A Counter-Intuitive Case Study 795
15.4 Compile-Time Consternation 801

15.4.1 Memory-Reference Restrictions 801

15.4.2 Address- and Data-Dependency Difficulties . . .
15.4.3 Control-Dependency Calamities
15.5 Higher-Level Primitives
15.5.1 Memory Allocation
1552 Locking
1553 RCU
15.5.4 Higher-Level Primitives: Discussion
15.6 Hardware Specifics
15.6.1 Alpha.
1562 Armv7-A/R.
1563 Armv8
1564 Ttanium
1565 MIPS
15.6.6 POWER/PowerPC
15.6.7 SPARCTSO
1568 x86
1569 zSystems.
15.6.10 Hardware Specifics: Discussion

16 Ease of Use

16.1 WhatisEasy?
16.2 Rusty Scale for APIDesign
16.3 Shaving the Mandelbrot Set.

17 Conflicting Visions of the Future

17.1 The Future of CPU Technology Ain’t What it Used to Be
17.1.1 Uniprocessor Uber Alles
17.1.2 Multithreaded Mania
17.1.3 MoreoftheSame
17.1.4 Crash Dummies Slamming into the Memory Wall
17.1.5 Astounding Accelerators

17.2 Transactional Memory
17.2.1 OutsideWorld
17.2.2 Process Modification
17.2.3 Synchronization
17.2.4 Other Transactions

18

17.2.5 Case Study: Sequence Locking 904

17.2.6 Discussion 906
17.3 Hardware Transactional Memory 912
17.3.1 HTM Benefits WRT Locking 913
17.3.2 HTM Weaknesses WRT Locking 915
17.3.3 HTM Weaknesses WRT Locking When Augmented 926
17.3.4 Where Does HTM Best FitIn? 928
17.3.5 Potential Game Changers 929
17.3.6 Conclusions 934
17.4 Formal Regression Testing? 935
17.4.1 Automatic Translation 936
17.42 Environment 937
1743 Overhead 938
1744 LocateBugs 940
17.4.5 Minimal Scaffolding 941
174.6 RelevantBugs 942
17.47 Formal Regression Scorecard 944
17.5 Functional Programming for Parallelism 946
17.6 Summary 948
Looking Forward and Back 949
Important Questions 955
A.1 Why Aren’t Parallel Programs Always Faster? 956
A.2 Why Not Remove Locking? 956
A3 WhatTimelIsIt? 957
A4 What Does “After” Mean? 960
A.5 How Much Ordering Is Needed? 965
A.5.1 Where is the Defining Data? 966
A.5.2 Consistent Data Used Consistently? 968
A.5.3 Isthe Problem Partitionable? 968
A.54 Noneofthe Above? 968
A.6 Whatis the Difference Between “Concurrent” and “Parallel”? 969
A.7 Why Is Software Buggy? 971

B

“Toy” RCU Implementations 973
B.1 Lock-BasedRCU 973
B.2 Per-Thread Lock-Based RCU 975
B.3 Simple Counter-Based RCU 977
B.4 Starvation-Free Counter-Based RCU 979
B.5 Scalable Single-Counter RCU 983
B.6 Scalable Counter-BasedRCU 986
B.7 Scalable Counter-Based RCU With Shared Grace Periods 988
B.8 RCU Based on Free-Running Counter 992
B.9 Nestable RCU Based on Free-Running Counter 995
B.10 RCU Based on Quiescent States 999
B.11 Summary of Toy RCU Implementations 1003
Why Memory Barriers? 1005
C.1 Cache Structure 1006
C.2 Cache-Coherence Protocols 1009
C2.1 MESIStates 1009
C.2.2 MESI Protocol Messages 1010
C.2.3 MESI State Diagram 1012
C.24 MESI Protocol Example 1015
C.3 Stores Result in Unnecessary Stalls 1017
C3.1 StoreBuffers 1018
C.3.2 Store Forwarding 1020
C.3.3 Store Buffers and Memory Barriers 1021
C.4 Store Sequences Result in Unnecessary Stalls 1026
C.4.1 Invalidate Queues 1027
C.4.2 Invalidate Queues and Invalidate Acknowledge . 1027
C.4.3 Invalidate Queues and Memory Barriers 1028
C.5 Read and Write Memory Barriers 1033
C.6 Example Memory-Barrier Sequences 1034
C.6.1 Ordering-Hostile Architecture 1034
C.62 Examplel 1036
C.63 Example2 1037
C64 Example3 1038

C.7 Are Memory Barriers Forever? 1039

C.8 Advice to Hardware Designers

Style Guide

D.1 Paul’sConventions

D2 NISTStyleGuide
D.2.1 UnitSymbol
D.2.2 NIST Guide Yet To Be Followed

D3 KEIgX Conventions
D.3.1 MonospaceFont
D.3.2 Cross-reference.
D.3.3 Non Breakable Spaces
D.3.4 Hyphenationand Dashes
D.3.5 Punctuation.
D.3.6 Floating Object Format
D.3.7 Improvement Candidates

Answers to Quick Quizzes

E.1 HowToUseThisBook
E.2 Introduction
E.3 HardwareanditsHabits
E.4 ToolsoftheTrade
E5 Counting,
E.6 Partitioning and Synchronization Design
E.7 Locking
E.8 DataOwnership
E.9 Deferred Processing
E.10 Data Structures
E.11 Validation
E.12 Formal Verification
E.13 Putting It All Together
E.14 Advanced Synchronization
E.15 Advanced Synchronization: Memory Ordering
E.16 Easeof Use
E.17 Conflicting Visions of the Future
E.18 Important Questions
E.19 “Toy” RCU Implementations

Glossary 1358
Bibliography 1378
Credits 1463
EIEX Advisoro 1463
Reviewers L 1463
Machine Owners, 1464
Original Publications 1465
Figure Credits, 1466
Other Support 1469
Acronyms 1470
Index of Terms 1472
Index of People 1477

Index of APIs 1479

Chapter 1
How To Use This Book

If you would only recognize that life is hard, things
would be so much easier for you.

Louis D. BRANDEIS

The purpose of this book is to help you program shared-memory parallel
systems without risking your sanity.! Nevertheless, you should think of the
information in this book as a foundation on which to build, rather than as a
completed cathedral. Your mission, if you choose to accept, is to help make
further progress in the exciting field of parallel programming—progress
that will in time render this book obsolete.

Parallel programming in the 21% century is no longer focused solely on
science, research, and grand-challenge projects. And this is all to the good,
because it means that parallel programming is becoming an engineering
discipline. Therefore, as befits an engineering discipline, this book examines
specific parallel-programming tasks and describes how to approach them.
In some surprisingly common cases, these tasks can be automated.

This book is written in the hope that presenting the engineering disci-
pline underlying successful parallel-programming projects will free a new
generation of parallel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their energy and cre-
ativity on new frontiers. However, what you get from this book will be
determined by what you put into it. It is hoped that simply reading this
book will be helpful, and that working the Quick Quizzes will be even more
helpful. However, the best results come from applying the techniques taught
in this book to real-life problems. As always, practice makes perfect.

I Or, perhaps more accurately, without much greater risk to your sanity than that incurred
by non-parallel programming. Which, come to think of it, might not be saying all that much.

)

But no matter how you approach it, we sincerely hope that parallel
programming brings you at least as much fun, excitement, and challenge
that it has brought to us!

1.1 Roadmap

Cat: Where are you going?

Alice: Which way should | go?

Cat: That depends on where you are going.
Alice: | don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis CARROLL, ALICE IN WONDERLAND

This book is a handbook of widely applicable and heavily used design
techniques, rather than a collection of optimal algorithms with tiny areas
of applicability. You are currently reading Chapter 1, but you knew that
already. Chapter 2 gives a high-level overview of parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is
difficult to write good parallel code unless you understand the underlying
hardware. Because hardware constantly evolves, this chapter will always
be out of date. We will nevertheless do our best to keep up. Chapter 4
then provides a very brief overview of common shared-memory parallel-
programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest
problems imaginable, namely counting. Because almost everyone has
an excellent grasp of counting, this chapter is able to delve into many
important parallel-programming issues without the distractions of more-
typical computer-science problems. My impression is that this chapter has
seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing
the issues identified in Chapter 5. It turns out that it is important to address
parallelism at the design level when feasible: To paraphrase Dijkstra [Dij68],
“retrofitted parallelism considered grossly suboptimal” [McK12c].

The next three chapters examine three important approaches to synchro-
nization. Chapter 7 covers locking, which is still not only the workhorse
of production-quality parallel programming, but is also widely considered
to be parallel programming’s worst villain. Chapter 8 gives a brief over-
view of data ownership, an often overlooked but remarkably pervasive and
powerful approach. Finally, Chapter 9 introduces a number of deferred-
processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which
are heavily used due to their excellent partitionability, which (usually) leads
to excellent performance and scalability.

As many have learned to their sorrow, parallel programming without
validation is a sure path to abject failure. Chapter 11 covers various forms
of testing. It is of course impossible to test reliability into your program
after the fact, so Chapter 12 follows up with a brief overview of a couple of
practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming
problems. The difficulty of these problems vary, but should be appropriate
for someone who has mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including non-
blocking synchronization and parallel real-time computing, while Chapter 15
covers the advanced topic of memory ordering. Chapter 16 follows up
with some ease-of-use advice. Chapter 17 looks at a few possible future
directions, including shared-memory parallel system design, software and
hardware transactional memory, and functional programming for parallelism.
Finally, Chapter 18 reviews the material in this book and its origins.

This chapter is followed by a number of appendices. The most popular
of these appears to be Appendix C, which delves even further into memory
ordering. Appendix E contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will
never grow.

ABBREVIATED FROM RONALD E. OSBURN

“Quick quizzes” appear throughout this book, and the answers may be found
in Appendix E starting on page 1075. Some of them are based on material
in which that quick quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current knowledge. As
with most endeavors, what you get out of this book is largely determined by
what you are willing to put into it. Therefore, readers who make a genuine
effort to solve a quiz before looking at the answer find their effort repaid
handsomely with increased understanding of parallel programming.

[Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? W]

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint
of the reader rather than the author. Is that really the intent? B

Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do
about it?

In short, if you need a deep understanding of the material, then you
should invest some time into answering the Quick Quizzes. Don’t get me
wrong, passively reading the material can be quite valuable, but gaining
full problem-solving capability really does require that you practice solving
problems. Similarly, gaining full code-production capability really does
require that you practice producing code.

Quick Quiz 1.4: If passively reading this book doesn’t get me full problem-solving
and code-production capabilities, what on earth is the point??? H

I learned this the hard way during coursework for my late-in-life Ph.D. I
was studying a familiar topic, and was surprised at how few of the chapter’s
exercises I could answer off the top of my head.?> Forcing myself to answer

2 So I suppose that it was just as well that my professors refused to let me waive that class!

5

the questions greatly increased my retention of the material. So with these
Quick Quizzes I am not asking you to do anything that I have not been doing
myself.

Finally, the most common learning disability is thinking that you already
understand the material at hand. The quick quizzes can be an extremely
effective cure.

1.3 Alternatives to This Book

Between two evils | always pick the one I never tried
before.

MAE WEST

As Knuth learned the hard way, if you want your book to be finite, it must
be focused. This book focuses on shared-memory parallel programming,
with an emphasis on software that lives near the bottom of the software
stack, such as operating-system kernels, parallel data-management systems,
low-level libraries, and the like. The programming language used by this
book is C.

If you are interested in other aspects of parallelism, you might well be
better served by some other book. Fortunately, there are many alternatives
available to you:

1. If you prefer a more academic and rigorous treatment of parallel
programming, you might like Herlihy’s and Shavit’s textbook [HSO08,
HSLS20]. This book starts with an interesting combination of low-
level primitives at high levels of abstraction from the hardware, and
works its way through locking and simple data structures including
lists, queues, hash tables, and counters, culminating with transactional
memory, all in Java. Michael Scott’s textbook [Scol3] approaches
similar material with more of a software-engineering focus, and, as
far as I know, is the first formally published academic textbook with
section devoted to RCU.

6

Herlihy, Shavit, Luchangco, and Spear did catch up in their second
edition [HSLS20] by adding short sections on hazard pointers and on
RCU, with the latter in the guise of EBR.? They also include a brief
history of both, albeit with an abbreviated history of RCU that picks
up almost a year after it was accepted into the Linux kernel and more
than 20 years after Kung’s and Lehman’s landmark paper [KL80].
Those wishing a deeper view of the history may find it in this book’s
Section 9.5.5.

However, readers who might otherwise suspect a hostile attitude
towards RCU on the part of this textbook’s first author should refer to
the last full sentence on the first page of one of his papers [BGHZ16].
This sentence reads “QSBR [a particular class of RCU implementa-
tions] is fast and can be applied to virtually any data structure.” These
are clearly not the words of someone who is hostile towards RCU.

2. If you would like an academic treatment of parallel programming
from a programming-language-pragmatics viewpoint, you might be
interested in the concurrency chapter from Scott’s textbook [Sco06,
Scol5] on programming-language pragmatics.

3. If you are interested in an object-oriented patternist treatment of
parallel programming focussing on C++, you might try Volumes 2
and 4 of Schmidt’s POSA series [SSRB00, BHS07]. Volume 4
in particular has some interesting chapters applying this work to a
warehouse application. The realism of this example is attested to
by the section entitled “Partitioning the Big Ball of Mud”, in which
the problems inherent in parallelism often take a back seat to getting
one’s head around a real-world application.

4. If you want to work with Linux-kernel device drivers, then Corbet’s,
Rubini’s, and Kroah-Hartman’s “Linux Device Drivers” [CRKHO05]
is indispensable, as is the Linux Weekly News web site (https:
//lwn.net/). There is a large number of books and resources on
the more general topic of Linux kernel internals.

3 Albeit an implementation that contains a reader-preemption bug noted by Richard
Bornat.

https://lwn.net/
https://lwn.net/

10.

11.

12.

7

. If your primary focus is scientific and technical computing, and

you prefer a patternist approach, you might try Mattson et al.’s
textbook [MSMO5]. It covers Java, C/C++, OpenMP, and MPI. Its
patterns are admirably focused first on design, then on implementation.

. If your primary focus is scientific and technical computing, and you

are interested in GPUs, CUDA, and MPI, you might check out Norm
Matloff’s “Programming on Parallel Machines” [Mat17]. Of course,
the GPU vendors have quite a bit of additional information [AMD20,
Zelll,NVil7a, NVil7b].

. If you are interested in POSIX Threads, you might take a look at

David R. Butenhof’s book [But97]. In addition, W. Richard Stevens’s
book [Ste92, Stel3] covers UNIX and POSIX, and Stewart Weiss’s
lecture notes [Weil3] provide an thorough and accessible introduction
with a good set of examples.

. If you are interested in C++11, you might like Anthony Williams’s

“C++ Concurrency in Action: Practical Multithreading” [Will2,
Will9] or Rainer Grimm’s “Concurrency with Modern C++” [Gril7].

. If you are interested in C++, but in a Windows environment, you

might try Herb Sutter’s “Effective Concurrency” series in Dr. Dobbs
Journal [SutO8]. This series does a reasonable job of presenting a
commonsense approach to parallelism.

If you want to try out Intel Threading Building Blocks, then perhaps
James Reinders’s book [Rei07] is what you are looking for.

Those interested in learning how various types of multi-processor
hardware cache organizations affect the implementation of kernel
internals should take a look at Curt Schimmel’s classic treatment of
this subject [Sch94].

If you are looking for a hardware view, Hennessy’s and Patterson’s
classic textbook [HP17] is well worth a read. A “Readers Digest”
version of this tome geared for scientific and technical workloads
(bashing big arrays) may be found in Andrew Chien’s textbook [Chi22].

8

If you are looking for an academic textbook on memory ordering from
amore hardware-centric viewpoint, that of Daniel Sorinetal. [SHW11,
NSHW?20] is highly recommended. For a memory-ordering tutorial
from a Linux-kernel viewpoint, Paolo Bonzini’s LWN series is a good
place to start [Bon21a, Bon21le, Bon21c, Bon21b, Bon21d, Bon21f].

13. Those wishing to learn about the Rust language’s support for low-level
concurrency should refer to Mara Bos’s book [Bos23].

14. Finally, those using Java might be well-served by Doug Lea’s text-
books [Lea97, GPB*07].

However, if you are interested in principles of parallel design for low-level
software, especially software written in C, read on!

1.4 Sample Source Code

Use the source, Luke!

UNKNOWN STAR WARS FAN

This book discusses its fair share of source code, and in many cases this
source code may be found in the CodeSamples directory of this book’s
git tree. For example, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls. c, which is called out
in Appendix B. Non-UNIX systems have their own well-known ways of
locating files by filename.

1.5 Video Resources

I hear and | forget; | see and | remember, | do and |
understand.

UNKNOWN

This section calls attention to some talks covering a few sections of this
book.

Chapter 2 (“Introduction”) is covered by a 2025 talk entitled “Breaking
Up is Hard to Do”. Video is available here: https://kernel-recipes.
org/en/2025/schedule/breaking-up-is-hard-to-do/, but you
will need to supply your own 2x4 Duplo and Lego bricks, two of the
former and sixteen of the latter. The presentation also touches on Chapter 6
(“Partitioning and Synchronization Design”).

Chapter 3 (“Hardware and its Habits”) is covered by a 2023 talk
entitled “Hardware and its Concurrency Habits”. Slides and video are
available here: https://kernel-recipes.org/en/2023/schedule/
hardware-and-its-concurrency-habits/.

Chapter 5 (“Counting”) is covered by the 2024 talk enti-
tled “Case Study: Concurrent Counting”. Slides and video are
available here: https://kernel-recipes.org/en/2024/schedule/
case-study-concurrent-counting/.

Section 9.3 (“Hazard Pointers”) is covered by the 2024 talk entitled
“Hazard Pointers in the Linux Kernel”, though it is to be hoped that Maged
Michael some day gives a talk whose video is archived. In the meantime,
slides and video are available here: https://1lpc.events/event/18/
contributions/1731/.

Section 9.5.1 (“Introduction to RCU”) and Section 9.5.2 (“RCU
Fundamentals”) is covered by the 2021 talk entitled “Unraveling RCU-
Usage Mysteries (Fundamentals)”. Slides and video are available here:
http://www.rdrop.com/~paulmck/RCU/RCUusageFundamental.
2021.12.07a.LF.pdf and https://www.linuxfoundation.org/
webinars/unraveling-rcu-usage-mysteries, respectively.

https://kernel-recipes.org/en/2025/schedule/breaking-up-is-hard-to-do/
https://kernel-recipes.org/en/2025/schedule/breaking-up-is-hard-to-do/
https://kernel-recipes.org/en/2023/schedule/hardware-and-its-concurrency-habits/
https://kernel-recipes.org/en/2023/schedule/hardware-and-its-concurrency-habits/
https://kernel-recipes.org/en/2024/schedule/case-study-concurrent-counting/
https://kernel-recipes.org/en/2024/schedule/case-study-concurrent-counting/
https://lpc.events/event/18/contributions/1731/
https://lpc.events/event/18/contributions/1731/
http://www.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
http://www.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries

10

Section 9.5.4 (“RCU Usage”) is covered by the 2022 talk entitled “Un-
raveling RCU-Usage Mysteries (Additional Use Cases)”. Slides and video
are available here: https://events.linuxfoundation.org/wp-
content/uploads/2022/02/RCUusageAdditional.2022.02.22b.
LF-1.pdf and https://www.linuxfoundation.org/webinars/
unraveling-rcu-usage-mysteries—-additional-use-cases,
respectively.

Section 11.6.4 (“Hunting Heisenbugs”) is covered by the 2023 talk
also entitled “Hunting Heisenbugs”. Slides and video are available here:
https://lpc.events/event/17/contributions/1504/.

1.6 Whose Book Is This?

If you become a teacher, by your pupils you’ll be
taught.

OscAR HAMMERSTEIN 11

As the cover says, the editor is one Paul E. McKenney. However, the editor
does accept contributions via the perfbook@vger.kernel.org email list.
These contributions can be in pretty much any form, with popular approaches
including text emails, patches against the book’s I&TEX source, and even
git pull requests. Use whatever form works best for you.

To create patches or git pull requests, you will need the
XX source to the book, which is at git://git.kernel.
org/pub/scm/linux/kernel/git/paulmck/perfbook.git, or, alter-
natively, https://git.kernel.org/pub/scm/linux/kernel/git/
paulmck/perfbook.git. You will of course also need git and IKTEX,
which are available as part of most mainstream Linux distributions. Other
packages may be required, depending on the distribution you use. The
required list of packages for a few popular distributions is listed in the file
FAQ-BUILD. txt in the I&TEX source to the book.

To create and display a current IZTEX source tree of this book, use the
list of Linux commands shown in Listing 1.1. In some environments, the
evince command that displays perfbook.pdf may need to be replaced,

https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases
https://lpc.events/event/17/contributions/1504/
mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

You may need to install a font. See item 1 in FAQ.txt.

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-lc.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

make help # Display other build options

Listing 1.2: Generating an Updated PDF

git remote update

git checkout origin/master

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

for example, with acroread. The git clone command need only be used
the first time you create a PDF, subsequently, you can run the commands
shown in Listing 1.2 to pull in any updates and generate an updated PDF.
The commands in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at https://kernel.org/
pub/linux/kernel/people/paulmck/perfbook/perfbook.html
and at http://wuw.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git
pull requests is similar to that of the Linux kernel, which is
documented here: https://www.kernel.org/doc/html/latest/
process/submitting-patches.html. One important requirement is
that each patch (or commit, in the case of a git pull request) must contain
a valid Signed-off-by: line, which has the following format:

Signed-off-by: My Name <mynameQexample.org>

Please see https://lore.kernel.org/lkml/20070116022324.
GA285130@linux.vnet.ibm.com/ for an example patch with a
Signed-off-by: line. Note well that the Signed-off-by: line has
a very specific meaning, namely that you are certifying that:

https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://lore.kernel.org/lkml/20070116022324.GA28513@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/20070116022324.GA28513@linux.vnet.ibm.com/

12

(a) The contribution was created in whole or in part by me and I have the
right to submit it under the open source license indicated in the file;
or

(b) The contribution is based upon previous work that, to the best of
my knowledge, is covered under an appropriate open source license
and I have the right under that license to submit that work with
modifications, whether created in whole or in part by me, under the
same open source license (unless I am permitted to submit under a
different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person
who certified (a), (b) or (¢) and I have not modified it.

(d) I understand and agree that this project and the contribution are
public and that a record of the contribution (including all personal
information I submit with it, including my sign-off) is maintained
indefinitely and may be redistributed consistent with this project or
the open source license(s) involved.

This is quite similar to the Developer’s Certificate of Origin (DCO) 1.1
used by the Linux kernel. You must use your real name: I unfortunately
cannot accept pseudonymous or anonymous contributions.

The language of this book is American English, however, the open-
source nature of this book permits translations, and I personally encourage
them. The open-source licenses covering this book additionally allow you
to sell your translation, if you wish. I do request that you send me a copy
of the translation (hardcopy if available), but this is a request made as a
professional courtesy, and is not in any way a prerequisite to the permission
that you already have under the Creative Commons and GPL licenses. Please
see the FAQ. txt file in the source tree for a list of translations currently in
progress. I consider a translation effort to be “in progress” once at least one
chapter has been fully translated.

I have no plans to produce hardcopies of this book, but you should
feel free to do so, for example, by using any of a number of print services
available on the Internet. Cover art is available in the cartoons directory
of this book’s git archive, but feel free to design your own.

13

There are many styles under the “American English” rubric. The style
for this particular book is documented in Appendix D.

As noted at the beginning of this section, I am this book’s editor.
However, if you choose to contribute, it will be your book as well. In that
spirit, I offer you Chapter 2, our introduction.

Chapter 2
Introduction

If parallel programming is so hard, why are there so
many parallel programs?

UNKNOWN

Parallel programming has earned a reputation as one of the most difficult
areas a hacker can tackle. Papers and textbooks warn of the perils of
deadlock, livelock, race conditions, non-determinism, Amdahl’s-Law limits
to scaling, and excessive realtime latencies. And these perils are quite real;
we authors have accumulated uncounted years of experience along with the
resulting emotional scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at introduction
invariably become easier over time. For example, the once-rare ability to
drive a car is now commonplace in many countries. This dramatic change
came about for two basic reasons: (1) Cars became cheaper and more readily
available, so that more people had the opportunity to learn to drive, and
(2) Cars became easier to operate due to automatic transmissions, automatic
chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true for many other technologies, including computers. It is
no longer necessary to operate a keypunch in order to program. Spreadsheets
allow most non-programmers to get results from their computers that would
have required a team of specialists a few decades ago. Perhaps the most
compelling example is web-surfing and content creation, which since the
early 2000s has been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As recently as 1968,
such content creation was a far-out research project [Eng68], described at
the time as “like a UFO landing on the White House lawn” [Gri00].

Therefore, if you wish to argue that parallel programming will remain
as difficult as it is currently perceived by many to be, it is you who bears the

15

burden of proof, keeping in mind the many centuries of counter-examples
in many fields of endeavor.

2.1 Historic Parallel Programming Difficulties

Not the power to remember, but its very opposite,
the power to forget, is a necessary condition for our
existence.

SHOLEM ASCH

As indicated by its title, this book takes a different approach. Rather than
complain about the difficulty of parallel programming, it instead examines
the reasons why parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen, these difficulties
have historically fallen into several categories, including:

1. The historic high cost and relative rarity of parallel systems.

2. The typical researcher’s and practitioner’s lack of experience with
parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel
programming.

5. The high overhead of communication relative to that of processing,
even in tightly coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome.
First, over the past few decades, the cost of parallel systems has decreased
from many multiples of that of a house to that of a modest meal, courtesy of
Moore’s Law [M0065]. Papers calling out the advantages of multicore CPUs
were published as early as 1996 [ONH*96]. IBM introduced simultaneous
multi-threading into its high-end POWER family in 2000, and multicore in
2001. Intel introduced hyperthreading into its commodity Pentium line in

16

November 2000, and both AMD and Intel introduced dual-core CPUs in
2005. Sun followed with the multicore/multi-threaded Niagara in late 2005.
In fact, by 2008, it was becoming difficult to find a single-CPU desktop
system, with single-core CPUs being relegated to netbooks and embedded
devices. By 2012, even smartphones were starting to sport multiple CPUs.
By 2020, safety-critical software standards started addressing concurrency.

Second, the advent of low-cost and readily available multicore systems
means that the once-rare experience of parallel programming is now available
to almost all researchers and practitioners. In fact, parallel systems have
long been within the budget of students and hobbyists. We can therefore
expect greatly increased levels of invention and innovation surrounding
parallel systems, and that increased familiarity will over time make the once
prohibitively expensive field of parallel programming much more friendly
and commonplace.

Third, in the 20" century, large systems of highly parallel software were
almost always closely guarded proprietary secrets. In happy contrast, the
21% century has seen numerous open-source (and thus publicly available)
parallel software projects, including the Linux kernel [Tor03], database
systems [Pos08, MS08], and message-passing systems [The08, UniO8a].
This book will draw primarily from the Linux kernel, but will provide much
material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of
the 1980s and 1990s were almost all proprietary projects, these projects
have seeded other communities with cadres of developers who understand
the engineering discipline required to develop production-quality parallel
code. A major purpose of this book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication
relative to that of processing, remains largely in force. This difficulty has
been receiving increasing attention during the new millennium. However,
according to Stephen Hawking, the finite speed of light and the atomic nature
of matter will limit progress in this area [Gar07, Moo03]. Fortunately, this
difficulty has been in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective strategies for
handling it. In addition, hardware designers are increasingly aware of these

17

issues, so perhaps future hardware will be more friendly to parallel software,
as discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be
exceedingly hard for many decades. You seem to be hinting that it is not so hard.
What sort of game are you playing? H

However, even though parallel programming might not be as hard as is
commonly advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential
programming? W

It therefore makes sense to consider alternatives to parallel programming.
However, it is not possible to reasonably consider parallel-programming
alternatives without understanding parallel-programming goals. This topic
is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end
up somewhere else.

Yoci BERRA

The three major goals of parallel programming (over and above those of
sequential programming) are as follows:

1. Performance.
2. Productivity.
3. Generality.

Unfortunately, given the current state of the art, it is possible to achieve
at best two of these three goals for any given parallel program. These three
goals therefore form the iron triangle of parallel programming, a triangle
upon which overly optimistic hopes all too often come to grief.!

1" Kudos to Michael Wong for naming the iron triangle.

18

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability,
robustness, and so on? W

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make
the list, why do productivity and generality?

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct
than are sequential programs, again, shouldn’t correctness really be on the list? W

[Quick Quiz 2.6: What about just having fun? W]

Each of these goals is elaborated upon in the following sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort.
After all, if performance is not a concern, why not do yourself a favor: Just
write sequential code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about
something other than performance? H

Note that “performance” is interpreted broadly here, including for
example scalability (performance per CPU) and efficiency (performance
per watt).

That said, the focus of performance has shifted from hardware to parallel
software. This change in focus is due to the fact that, although Moore’s
Law continues to deliver increases in transistor density, it has ceased to
provide the traditional single-threaded performance increases. This can
be seen in Figure 2.1,> which shows that writing single-threaded code and
simply waiting a year or two for the CPUs to catch up may no longer be

2 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one
or more instructions per clock, and MIPS (millions of instructions per second, usually from
the old Dhrystone benchmark) for older CPUs requiring multiple clocks to execute even the
simplest instruction. The reason for shifting between these two measures is that the newer
CPUs’ ability to retire multiple instructions per clock is typically limited by memory-system
performance. Furthermore, the benchmarks commonly used on the older CPUs are obsolete,

19

10000

E \ NRE
%) i W
o X]
S 1000 ¢
% F E
& 100 | f 2
(o2 - + 3
(0] B +]
s ' g]
10 ++ —
el 3 + E
S i #+ +]
o) 1 3 + =
5 e E

01 N N R NN N R
K 8 8 6 6 o 82 L8
o o O ® ® © & O o O
~— ~— ~— ~— ~— A Al Al A Al

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

an option. Given the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is the way to go for
those wanting to avail themselves of the full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from inefficient scripting
languages to C or C++? H

Even so, the first goal is performance rather than scalability, especially
given that the easiest way to attain linear scalability is to reduce the
performance of each CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per second on a single
CPU, but does not scale at all? Or a program that provides 10 transactions
per second on a single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you happened to have a
32-CPU system.

and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

20

That said, just because you have multiple CPUs is not necessarily in and
of itself a reason to use them all, especially given the recent decreases in
price of multi-CPU systems. The key point to understand is that parallel
programming is primarily a performance optimization, and, as such, it is
one potential optimization of many. If your program is fast enough as
currently written, there is no reason to optimize, either by parallelizing it or
by applying any of a number of potential sequential optimizations.® By the
same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to
the best sequential algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing the performance of
parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical issues??? And not
just any non-technical issue, but productivity of all things? Who cares? H

Productivity has been becoming increasingly important in recent decades.
To see this, consider that the price of early computers was tens of millions
of dollars at a time when engineering salaries were but a few thousand
dollars a year. If dedicating a team of ten engineers to such a machine would
improve its performance, even by only 10 %, then their salaries would be
repaid many times over.

One such machine was the CSIRAC, the oldest still-intact fully electronic
stored-program computer, which was put into operation in 1949 [Mus20,
Depl17]. Because this machine was built before the transistor era, it was
constructed of 2,000 vacuum tubes, ran with a clock frequency of 1 kHz,
consumed 30 kW of power, and weighed more than three metric tons. Given
that this machine had but 768 words of RAM, it is safe to say that it did
not suffer from the productivity issues that often plague today’s large-scale
software projects.

3 Of course, if you are a hobbyist whose primary interest is writing parallel software, that
is more than enough reason to parallelize whatever software you are interested in.

6

1x10 T \
¥
100000 s
10000
%
1000
o
Al
o
[a\}

100 Jﬁp!

10

MIPS per Die

1
0.1

2005
2010
2015

Figure 2.2: MIPS per Die for Intel CPUs

Today, it would be quite difficult to purchase a machine with so little
computing power. Perhaps the closest equivalents are 8-bit embedded
microprocessors exemplified by the venerable Z80 [Wik08], but even the
old Z80 had a CPU clock frequency more than 1,000 times faster than the
CSIRAC. The Z80 CPU had 8,500 transistors, and could be purchased in
2008 for less than $2 US per unit in 1,000-unit quantities. In stark contrast
to the CSIRAC, software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can
be seen in Figure 2.2. This figure plots an approximation to computational
power per die over the past four decades, showing an impressive six-order-
of-magnitude increase over a period of forty years. Note that the advent of
multicore CPUs has permitted this increase to continue apace despite the
clock-frequency wall encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads each.

27

One of the inescapable consequences of the rapid decrease in the cost
of hardware is that software productivity becomes increasingly important.
It is no longer sufficient merely to make efficient use of the hardware: It
is now necessary to make extremely efficient use of software developers
as well. This has long been the case for sequential hardware, but parallel
hardware has become a low-cost commodity only recently. Therefore, only
recently has high productivity become critically important when creating
parallel software.

Quick Quiz 2.10: Given how cheap parallel systems have become, how can
anyone afford to pay people to program them? W

Perhaps at one time, the sole purpose of parallel software was perfor-
mance. Now, however, productivity is gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel software is to strive
for maximal generality. All else being equal, the cost of a more-general
software artifact can be spread over more users than that of a less-general
one. In fact, this economic force explains much of the maniacal focus on
portability, which can be seen as an important special case of generality.*
Unfortunately, generality often comes at the cost of performance, pro-
ductivity, or both. For example, portability is often achieved via adaptation
layers, which inevitably exact a performance penalty. To see this more gen-
erally, consider the following popular parallel programming environments:

C/C++ “Locking Plus Threads: This category, which includes POSIX
Threads (pthreads) [Ope97], Windows Threads, and numerous
operating-system kernel environments, offers excellent performance
(at least within the confines of a single SMP system) and also offers
good generality. Pity about the relatively low productivity.

Java: This general purpose and inherently multithreaded programming
environment is widely believed to offer much higher productivity than
C or C++, courtesy of the automatic garbage collector and the rich set

4 Kudos to Michael Wong for pointing this out.

23

of class libraries. However, its performance, though greatly improved
in the early 2000s, lags that of C and C++.

MPI: This Message Passing Interface [MPIO8] powers the largest scientific
and technical computing clusters in the world and offers unparalleled
performance and scalability. In theory, it is general purpose, but it is
mainly used for scientific and technical computing. Its productivity is
believed by many to be even lower than that of C/C++ “locking plus
threads” environments.

OpenMP: This set of compiler directives can be used to parallelize loops.
It is thus quite specific to this task, and this specificity often limits its
performance. It is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to relational database
queries. However, its performance is quite good as measured by
the Transaction Processing Performance Council (TPC) benchmark
results [Tra01]. Productivity is excellent; in fact, this parallel program-
ming environment enables people to make good use of a large parallel
system despite having little or no knowledge of parallel programming
concepts.

Quick Quiz 2.11: SQL??? That is ancient history. Here in the 2020s, if you
really want to make good use of a large parallel system, why not use machine
learning? M

The nirvana of parallel programming environments, one that offers
world-class performance, productivity, and generality, simply does not yet
exist. Until such a nirvana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and generality. One such
tradeoff is depicted by the green “iron triangle™ shown in Figure 2.3, which
shows how productivity becomes increasingly important at the upper layers
of the system stack, while performance and generality become increasingly
important at the lower layers of the system stack. The huge development

5 Kudos to Michael Wong for coining “iron triangle.”

24

Productivity

Performance
Ajjesauan

Figure 2.3: Software Layers and Performance, Productivity, and Generality

costs incurred at the lower layers must be spread over equally huge numbers
of users (hence the importance of generality), and performance lost in lower
layers cannot easily be recovered further up the stack. In the upper layers of
the stack, there might be very few users for a given specific application, in
which case productivity concerns are paramount. This explains the tendency
towards “bloatware” further up the stack: Extra hardware is often cheaper
than extra developers. This book is intended for developers working near
the bottom of the stack, where performance and generality are of greatest
concern.

It is important to note that a tradeoff between productivity and generality
has existed for centuries in many fields. For but one example, a nailgun
is more productive than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides driving nails. It
should therefore be no surprise to see similar tradeoffs appear in the field
of parallel computing. This tradeoft is shown schematically in Figure 2.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to

v2025.12.18a

Special-Purpose
~=<— Env Productive

for User 1

Special-Purpose
Environment
Productwe for User 2

User : General- Purpose User 4
Environment

Special-Purpose Environment

Productive for User 3 Special-Purpose

Environment
Productive for User 4

Figure 2.4: Tradeoff Between Productivity and Generality

help them with. The most productive possible language or environment for
a given user is one that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 2.12: This is a ridiculously unachievable ideal! Why not focus on
something that is achievable in practice? H

Unfortunately, a system that performs optimally on the user 1’s job is
unlikely to perform very well on user 2’s job. In other words, the most
productive languages and environments are domain-specific, and thus by
definition lacking generality.

Another option is to tailor a given programming language or environment
to the hardware system (for example, low-level languages such as assembly,
C, C++, or Java) or to some abstraction (for example, Haskell, Prolog, or
Snobol), as is shown by the circular region near the center of Figure 2.4.
These languages can be considered to be general in the sense that they
are equally ill-suited to the jobs required by users 1, 2, 3, and 4. In other
words, their generality comes at the expense of decreased productivity
when compared to domain-specific languages and environments. Worse

v2025.12.18a

26

yet, a language that is tailored to a given abstraction is likely to suffer from
performance and scalability problems unless and until it can be efficiently
mapped to real hardware.

Is there no escape from iron triangle’s three conflicting goals of perfor-
mance, productivity, and generality?

It turns out that there often is an escape, for example, using the alter-
natives to parallel programming discussed in the next section. After all,
parallel programming can be a great deal of fun, but it is not always the best
tool for the job.

2.3 Alternatives to Parallel Programming

Experiment is folly when experience shows the way.

ROGER M. BABsoN

In order to properly consider alternatives to parallel programming, you must
first decide on what exactly you expect the parallelism to do for you. As seen
in Section 2.2, the primary goals of parallel programming are performance,
productivity, and generality. Because this book is intended for developers
working on performance-critical code near the bottom of the software stack,
the remainder of this section focuses primarily on performance improvement.

It is important to keep in mind that parallelism is but one way to
improve performance. Other well-known approaches include the following,
in roughly increasing order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Optimize the sequential application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do
parallel programming without actually doing parallel programming. There
are a large number of ways to approach this, depending on the structure of
the application.

If your program is analyzing a large number of different scenarios, or is
analyzing a large number of independent data sets, one easy and effective
approach is to create a single sequential program that carries out a single
analysis, then use any of a number of scripting environments (for example
the bash shell) to run a number of instances of that sequential program in
parallel. In some cases, this approach can be easily extended to a cluster of
machines.

This approach may seem like cheating, and in fact some denigrate
such programs as “embarrassingly parallel”. And in fact, this approach
does have some potential disadvantages, including increased memory
consumption, waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is often extremely
productive, garnering extreme performance gains with little or no added
effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software environments that can
present a single-threaded programming environment, including relational
databases [Dat82], web-application servers, and map-reduce environments.
For example, a common design provides a separate process for each user,
each of which generates SQL from user queries. This per-user SQL is run
against a common relational database, which automatically runs the users’
queries concurrently. The per-user programs are responsible only for the
user interface, with the relational database taking full responsibility for the
difficult issues surrounding parallelism and persistence.

In addition, there are a growing number of parallel library functions,
particularly for numeric computation. Even better, some libraries take
advantage of special-purpose hardware such as vector units and general-
purpose graphical processing units (GPGPUs).

28

Taking this approach often sacrifices some performance, at least when
compared to carefully hand-coding a fully parallel application. However,
such sacrifice is often well repaid by a huge reduction in development effort.

Quick Quiz 2.13: Wait a minute! Doesn’t this approach simply shift the
development effort from you to whoever wrote the existing parallel software you
are using? WM

2.3.3 Performance Optimization

Up through the early 2000s, CPU clock frequencies doubled every 18
months. It was therefore usually more important to create new functionality
than to carefully optimize performance. Now that Moore’s Law is “only”
increasing transistor density instead of increasing both transistor density and
per-transistor performance, it might be a good time to rethink the importance
of performance optimization. After all, new hardware generations no longer
bring significant single-threaded performance improvements. Furthermore,
many performance optimizations can also conserve energy.

From this viewpoint, parallel programming is but another performance
optimization, albeit one that is becoming much more attractive as parallel
systems become cheaper and more readily available. However, it is wise to
keep in mind that the speedup available from parallelism is limited to roughly
the number of CPUs (but see Section 6.5 for an interesting exception). In
contrast, the speedup available from traditional single-threaded software
optimizations can be much larger. For example, replacing a long linked list
with a hash table or a search tree can improve performance by many orders
of magnitude. This highly optimized single-threaded program might run
much faster than its unoptimized parallel counterpart, making parallelization
unnecessary. Of course, a highly optimized parallel program would be even
better, aside from the added development effort required.

Furthermore, different programs might have different performance
bottlenecks. For example, if your program spends most of its time waiting
on data from your disk drive, using multiple CPUs will probably just
increase the time wasted waiting for the disks. In fact, if the program was
reading from a single large file laid out sequentially on a rotating disk,
parallelizing your program might well make it a lot slower due to the added

29

seek overhead. You should instead optimize the data layout so that the file
can be smaller (thus faster to read), split the file into chunks which can be
accessed in parallel from different drives, cache frequently accessed data in
main memory, or, if possible, reduce the amount of data that must be read.

Quick Quiz 2.14: What other bottlenecks might prevent additional CPUs from
providing additional performance? WM

Parallelism can be a powerful optimization technique, but it is not the
only such technique, nor is it appropriate for all situations. Of course, the
easier it is to parallelize your program, the more attractive parallelization
becomes as an optimization. Parallelization has a reputation of being
quite difficult, which leads to the question “exactly what makes parallel
programming so difficult?”

2.4 What Makes Parallel Programming Hard?

Real difficulties can be overcome; it is only the
imaginary ones that are unconquerable.

THEODORE N. VAIL

It is important to note that the difficulty of parallel programming is as
much a human-factors issue as it is a set of technical properties of the
parallel programming problem. We do need human beings to be able to
tell parallel systems what to do, otherwise known as programming. But
parallel programming involves two-way communication, with a program’s
performance and scalability being the communication from the machine to
the human. In short, the human writes a program telling the computer what
to do, and the computer critiques this program via the resulting performance
and scalability. Therefore, appeals to abstractions or to mathematical
analyses will often be of severely limited utility.

In the Industrial Revolution, the interface between human and machine
was evaluated by human-factor studies, then called time-and-motion studies.
Although there have been a few human-factor studies examining parallel
programming [ENS05, ES05, HCS*05, SS94], these studies have been

30

e N
Performance Productivity

Generality

o J

Figure 2.5: Categories of Tasks Required of Parallel Programmers

extremely narrowly focused, and hence unable to demonstrate any general
results. Furthermore, given that the normal range of programmer produc-
tivity spans more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 % difference in
productivity. Although the multiple-order-of-magnitude differences that
such studies can reliably detect are extremely valuable, the most impressive
improvements tend to be based on a long series of 10 % improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel pro-
grammers must undertake that are not required of sequential programmers.
We can then evaluate how well a given programming language or environ-
ment assists the developer with these tasks. These tasks fall into the four
categories shown in Figure 2.5, each of which is covered in the following
sections.

24.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: If there is but
one unpartionable work item, then it can be executed by at most one CPU at
a time, which is by definition sequential execution. However, partitioning
the work requires great care. For example, uneven partitioning can result

v2025.12.18a

31

in sequential execution once the small partitions have completed [Amd67].
In less extreme cases, load balancing can be used to fully utilize available
hardware and restore performance and scalability.

Although partitioning can greatly improve performance and scalability,
it can also increase complexity. For example, partitioning can complicate
handling of global errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process such global events.
More generally, each partition requires some sort of communication: After
all, if a given thread did not communicate at all, it would have no effect and
would thus not need to be executed. However, because communication incurs
overhead, careless partitioning choices can result in severe performance
degradation.

Furthermore, the number of concurrent threads must often be controlled,
as each such thread occupies common resources, for example, space in
CPU caches. If too many threads are permitted to execute concurrently,
the CPU caches will overflow, resulting in high cache miss rate, which in
turn degrades performance. Conversely, large numbers of threads are often
required to overlap computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.15: Other than CPU cache capacity, what might require limiting
the number of concurrent threads? W

Finally, permitting threads to execute concurrently greatly increases the
program’s state space, which can make the program difficult to understand
and debug, degrading productivity. All else being equal, smaller state
spaces having more regular structure are more easily understood, but this
is a human-factors statement as much as it is a technical or mathematical
statement. Good parallel designs might have extremely large state spaces,
but nevertheless be easy to understand due to their regular structure, while
poor designs can be impenetrable despite having a comparatively small state
space. The best designs exploit embarrassing parallelism, or transform the
problem to one having an embarrassingly parallel solution. In either case,
“embarrassingly parallel” is in fact an embarrassment of riches. The current
state of the art enumerates good designs; more work is required to make
more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single thread has full
access to all of the program’s resources. These resources are most often
in-memory data structures, but can be CPUs, memory (including caches),
I/O devices, computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the form of access
to a given resource depends on that resource’s location. For example,
in many message-passing environments, local-variable access is via ex-
pressions and assignments, while remote-variable access uses an entirely
different syntax, usually involving messaging. The POSIX Threads environ-
ment [Ope97], Structured Query Language (SQL) [Int92], and partitioned
global address-space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03, CBF13] offer implicit access, while Message Passing
Interface (MPI) [MPIOS8] offers explicit access because access to remote
data requires explicit messaging.

The other parallel-access-control issue is how threads coordinate access
to the resources. This coordination is carried out by the very large number
of synchronization mechanisms provided by various parallel languages and
environments, including message passing, locking, transactions, reference
counting, explicit timing, shared atomic variables, and data ownership.
Many traditional parallel-programming concerns such as deadlock, livelock,
and transaction rollback stem from this coordination. This framework can be
elaborated to include comparisons of these synchronization mechanisms, for
example locking vs. transactional memory [MMWO7], but such elaboration
is beyond the scope of this section. (See Sections 17.2 and 17.3 for more
information on transactional memory.)

[Quick Quiz 2.16: Just what is “explicit timing”??? H]

2.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallel-
ism, so much so that it is usually wise to begin parallelization by partitioning
your write-intensive resources and replicating frequently accessed read-
mostly resources. The resource in question is most frequently data, which

33

Figure 2.6: Coarse Partitioning Reduces Synchronization Overhead

might be partitioned over computer systems, mass-storage devices, NUMA
nodes, CPU cores (or dies or hardware threads), pages, cache lines, instances
of synchronization primitives, or critical sections of code. For example,
partitioning over locking primitives is termed “data locking” [BKS85].

Resource partitioning is frequently application dependent. For example,
numerical applications frequently partition matrices by row, column, or sub-
matrix, while commercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures. Thus, a commercial
application might assign the data for a given customer to a given few
computers out of a large cluster. An application might statically partition
data, or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite chal-
lenging for complex multilinked data structures. As a rough rule of thumb,
you want to keep the smallest number of partitions needed to meet your
scalability goals, with each partition thus being as large as possible.

The goal of this approach is to reduce the fraction of time consumed
by synchronization overhead, as illustrated by Figure 2.6, where the green
regions represent useful work and the red regions represent synchronization
overhead. Of course, the coarser synchronization on the right has only
16 partitions compared to the 64 partitions on the left, however, it is
quite possible that the added synchronization overhead will overwhelm
any performance benefit that might have resulted from the use of 64 CPUs
instead of 16.

v2025.12.18a

34

e N
Performance Productivity
—

Generality

o J

Figure 2.7: Ordering of Parallel-Programming Tasks

Quick Quiz 2.17: That sounds like a difficult tradeoft. Just how are developers
supposed to resolve it??? H

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the
compiler, libraries, or other software-environment infrastructure. However,
developers working with novel hardware features and components will often
need to work directly with such hardware. In addition, direct access to the
hardware can be required when squeezing the last drop of performance out
of a given system. In this case, the developer may need to tailor or configure
the application to the cache geometry, system topology, or interconnect
protocol of the target hardware.

In some cases, hardware may be considered to be a resource which
is subject to partitioning or access control, as described in the previous
sections.

v2025.12.18a

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice
uses composites of these capabilities. For example, the data-parallel
approach first partitions the data so as to minimize the need for inter-
partition communication, partitions the code accordingly, and finally maps
data partitions and threads so as to maximize throughput while minimizing
inter-thread communication, as shown in Figure 2.7. The developer can then
consider each partition separately, greatly reducing the size of the relevant
state space, in turn increasing productivity. Even though some problems are
non-partitionable, clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and scalability [Met99].

2.4.6 Existing Sequential Designs

Existing designs of sequential programs can be a limiting factor, especially
given the many pressures to make minimal changes when adapting systems
to run on multi-core systems. For example, consider the following hash-table
API that might be used in sequential code:

int hash_add(struct htab *htp);
int hash_del(int key);
struct htab xhash_lookup(int key);

Here, hash_add () and hash_del () both return the exact number of
elements in the hash table after the operation completes, or -1 if the operation
fails due to duplicate key or non-existent key, respectively. The hash_
lookup () function takes a key and returns a pointer to the corresponding
element, or NULL if there is no such element.

The problem with this API is the exact counts returned by hash_add ()
and hash_del (). Although maintaining and returning these counts is
almost free in sequential code, doing so on a multi-core system can be
extremely expensive and can limit scalability, as discussed in Chapter 5.
One way to fix this parallel-programming issue is to have these functions
instead return approximate counts (again as discussed in Chapter 5) or to
have them remain silent about the number of elements, as discussed in
Section 10.2.

36

There are of course any number of other design patterns that work well
in sequential code but not in concurrent code. However, this example should
give you a good idea what to look for.

2.4.7 How Do Languages and Environments Assist With
These Tasks?

Although many environments require the developer to deal manually with
these tasks, there are long-standing environments that bring significant
automation to bear. The poster child for these environments is SQL, many
implementations of which automatically parallelize single large queries and
also automate concurrent execution of independent queries and updates.

These four categories of tasks must be carried out in all parallel programs,
but that of course does not necessarily mean that the developer must manually
carry out these tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become cheaper and more
readily available.

[Quick Quiz 2.18: Are there any other obstacles to parallel programming? B]

2.5 Discussion

Until you try, you don’t know what you can’t do.

HENRY JAMES

This section has given an overview of the difficulties with, goals of, and
alternatives to parallel programming. This overview was followed by a
discussion of what can make parallel programming hard, along with a high-
level approach for dealing with parallel programming’s difficulties. Those
who still insist that parallel programming is impossibly difficult should review
some of the older guides to parallel programmming [Seq88, Bir89, BK85,
Inm85]. The following quote from Andrew Birrell’s monograph [Bir89] is
especially telling:

Writing concurrent programs has a reputation for being exotic
and difficult. I believe it is neither. You need a system that
provides you with good primitives and suitable libraries, you
need a basic caution and carefulness, you need an armory of
useful techniques, and you need to know of the common pitfalls.
I hope that this paper has helped you towards sharing my belief.

The authors of these older guides were well up to the parallel program-
ming challenge back in the 1980s. As such, there are simply no excuses for
refusing to step up to the parallel-programming challenge here in the 21
century!

We are now ready to proceed to the next chapter, which dives into the
relevant properties of the parallel hardware underlying our parallel software.

Chapter 3
Hardware and its Habits

Premature abstraction is the root of all evil.

A CAST OF THOUSANDS

Most people intuitively understand that passing messages between systems
is more expensive than performing simple calculations within the confines
of a single system. But it is also the case that communicating among
threads within the confines of a single shared-memory system can be quite
expensive. This chapter therefore looks at the cost of synchronization and
communication within a shared-memory system. These few pages can do no
more than scratch the surface of shared-memory parallel hardware design;
readers desiring more detail would do well to start with a recent edition of
Hennessy’s and Patterson’s classic text [HP17].

Quick Quiz 3.1: Why should parallel programmers bother learning low-level
properties of the hardware? Wouldn't it be easier, better, more elegant, and more
productive to remain at a higher level of abstraction? M

3.1 Overview

Mechanical Sympathy: Hardware and software
working together in harmony.

MARTIN THOMPSON

Careless reading of computer-system specification sheets might lead one to
believe that CPU performance is a footrace on a clear track, as illustrated in
Figure 3.1, where the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the
ideal case shown in Figure 3.1, the typical program more closely resembles

Figure 3.1: CPU Performance at its Best

an obstacle course than a race track. This is because the internal architecture
of CPUs has changed dramatically over the past few decades, courtesy of a
collision of Moore’s Law with certain laws of physics. A number of these
architectural changes are described in the following sections.

3.1.1 Pipelined CPUs

In the 1980s, the typical microprocessor fetched an instruction, decoded
it, and executed it, typically taking at least three clock cycles to complete
one instruction before even starting the next. In contrast, the CPU of the
late 1990s and of the 2000s execute many instructions simultaneously,
using pipelines; superscalar techniques; out-of-order instruction and data
handling; speculative execution, and more [HP17] in order to optimize the
flow of instructions and data through the CPU. Some cores have more than
one hardware thread, which is variously called simultaneous multithreading
(SMT) or hyperthreading (HT) [Fen73], each of which appears as an
independent CPU to software, at least from a functional viewpoint. These

4,0 GHz clock, 20 M& L3
cache, 20 stage pipeline...

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.2: CPUs Old and New

modern hardware features can greatly improve performance, as illustrated
by Figure 3.2.

Achieving full performance with a CPU having a long pipeline requires
highly predictable control flow through the program. Suitable control flow
is provided by programs that run in tight loops, for example, those doing
arithmetic on large matrices or vectors. Such loops allow the CPU to
correctly predict that the end-of-loop branch will be taken in almost all
cases, allowing the pipeline to be kept full and the CPU to execute at full
speed.

However, branch prediction is not always so easy. For example, consider
aprogram with many loops, each of which iterates a small but random number
of times. For another example, consider a museum-piece object-oriented
program with many virtual objects that can reference many different real
objects, all with different implementations for frequently invoked member
functions, resulting in many calls through pointers. In these cases, it is
difficult or even impossible for the CPU to predict where the next branch
might lead. Then either the CPU must stall waiting for execution to
proceed far enough to be certain where that branch leads, or it must guess
and then proceed using speculative execution. Although guessing works
extremely well for programs with predictable control flow, for unpredictable

41

Figure 3.3: CPU Meets a Pipeline Flush

branches (such as those in binary search) the guesses will frequently be
wrong. A wrong guess can be expensive because the CPU must discard
any speculatively executed instructions following the corresponding branch,
resulting in a pipeline flush. If pipeline flushes appear too frequently, they
drastically reduce overall performance, as fancifully depicted in Figure 3.3.

This gets even worse for hyperthreading (or SMT, if you prefer), es-
pecially on pipelined superscalar out-of-order CPU featuring speculative
execution. In this increasingly common case, all the hardware threads
sharing a core also share that core’s resources, including registers, cache,
execution units, and so on. The instructions are often decoded into micro-
operations, and use of the shared execution units and the hundreds of
hardware registers is often coordinated by a micro-operation scheduler. A
rough diagram of such a two-threaded core is shown in Figure 3.4, and more
accurate (and thus more complex) diagrams are available in textbooks and

Thread 0 Thread 1
Instructions Instructions

Decode and
Translate

Micro-Op
Scheduler

Registers
(100s!)

Execution
Units

Figure 3.4: Rough View of Modern Micro-Architecture

scholarly papers.! Therefore, the execution of one hardware thread can and
often is perturbed by the actions of other hardware threads sharing that core.

Even if only one hardware thread is active (for example, in old-school
CPU designs where there is only one thread), counterintuitive results are
quite common. Execution units often have overlapping capabilities, so that a
CPU’s choice of execution unit can result in pipeline stalls due to contention
for that execution unit from later instructions. In theory, this contention is
avoidable, but in practice CPUs must choose very quickly and without the
benefit of clairvoyance. In particular, adding an instruction to a tight loop
can sometimes actually cause execution to speed up.

Unfortunately, pipeline flushes and shared-resource contention are not
the only hazards in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

! Here is one example for a late-2010s Intel core: https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(server).

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from
memory than it did to execute an instruction. More recently, microprocessors
might execute hundreds or even thousands of instructions in the time required
to access memory. This disparity is due to the fact that Moore’s Law has
increased CPU performance at a much greater rate than it has decreased
memory latency, in part due to the rate at which memory sizes have grown.
For example, a typical 1970s minicomputer might have 4 KB (yes, kilobytes,
not megabytes, let alone gigabytes or terabytes) of main memory, with
single-cycle access.” Present-day CPU designers still can construct a 4 KB
memory with single-cycle access, even on systems with multi-GHz clock
frequencies. And in fact they frequently do construct such memories, but
they now call them “level-0 caches”, plus they can be a bit larger than 4 KB.

Although the large caches found on modern microprocessors can do
quite a bit to help combat memory-access latencies, these caches require
highly predictable data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a linked list have
extremely unpredictable memory-access patterns—after all, if the pattern
was predictable, us software types would not bother with the pointers, right?
Therefore, as shown in Figure 3.5, memory references often pose severe
obstacles to modern CPUs.

Thus far, we have only been considering obstacles that can arise during
a given CPU’s execution of single-threaded code. Multi-threading presents
additional obstacles to the CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem here is that the whole
idea of an atomic operation conflicts with the piece-at-a-time assembly-line
operation of a CPU pipeline. To hardware designers’ credit, modern CPUs
use a number of extremely clever tricks to make such operations look
atomic even though they are in fact being executed piece-at-a-time, with
one common trick being to identify all the cachelines containing the data

2 Tt is only fair to add that each of these single cycles lasted no less than 1.6 microseconds.

44

Figure 3.5: CPU Meets a Memory Reference

to be atomically operated on, ensure that these cachelines are owned by
the CPU executing the atomic operation, and only then proceed with the
atomic operation while ensuring that these cachelines remained owned by
this CPU. Because all the data is private to this CPU, other CPUs are
unable to interfere with the atomic operation despite the piece-at-a-time
nature of the CPU’s pipeline. Needless to say, this sort of trick can require
that the pipeline must be delayed or even flushed in order to perform the
cacheline-setup operations that permit a given atomic operation to complete
correctly.

In contrast, when executing a non-atomic operation, the CPU can load
values from cachelines as they appear and place the results in the store
buffer, without the need to wait for cacheline ownership. Although there
are a number of hardware optimizations that can sometimes hide cache

45

Figure 3.6: CPU Meets an Atomic Operation

latencies, an atomic operation’s effect on performance is all too often as
depicted in Figure 3.6.

Unfortunately, atomic operations usually apply only to single elements of
data. Because many parallel algorithms require that ordering constraints be
maintained between updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as performance-sapping
obstacles, as described in the next section.

Quick Quiz 3.2: What types of machines would allow atomic operations on
multiple data elements? Wl

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in Chapter 15 and
Appendix C. In the meantime, consider the following simple lock-based
critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock (&mylock) ;

%)

w

46

Figure 3.7: CPU Meets a Memory Barrier

If the CPU were not constrained to execute these statements in the order
shown, the effect would be that the variable “a” would be incremented
without the protection of “mylock”, which would defeat the purpose of
acquiring it. To prevent such destructive reordering, locking primitives
contain either explicit or implicit memory barriers. Because the whole
purpose of these memory barriers is to prevent reorderings that the CPU
(to say nothing of the compiler) would otherwise undertake in order to
increase performance, memory barriers almost always reduce performance,
as depicted in Figure 3.7.

As with atomic operations, CPU designers have been working hard to
reduce memory-barrier overhead, and have made substantial progress.

47

Figure 3.8: CPU Functional-Unit Mismatch

3.1.5 Functional Unit Failings

Modern superscalar CPUs have numerous functional units with varying
purposes and capabilities. Each CPU is likely to have several arithmetic-logic
units (ALUs) for integer and boolean arithmetic, a few vector units, a couple
of floating-point units (FPUs), and at least one each branch unit, load unit,
and store unit. Different CPUs will of course have different combinations
of functional units. However, not only will different applications need
different combinations of functional units, a given application is likely to
need different combinations at different phases of its execution.

This means that it does not make much sense to think in terms of a
given CPU having a perfect combination of functional units. Sometimes
a CPU instead must “hop along on one leg” using only a very few out
of its impressive array of functional units, as fancifully depicted by the
unfortunate CPU losing the race in Figure 3.8.

Quick Quiz 3.3: But what does this have to do with scaling workloads across a
multi-core CPU??? W

48

Figure 3.9: CPU Encounters Thermal Throttling

Unfortunately, a workload could make perfectly efficient use of each
and every one of a given CPU’s functional units and still lose, for example,
as described in the next section.

3.1.6 Thermal Throttling

One increasingly common frustrating experience is to carefully micro-
optimize a critical code path, greatly reducing the number of clock cycles
consumed by that code path, only to find that the wall-clock time consumed
by that code has actually increased.

Welcome to modern thermal throttling.

If you reduced the number of clock cycles by making more effective use
of the CPU’s functional units, you will have increased the power consumed
by that CPU. This will in turn increase the amount of heat dissipated by
that CPU. If this heat dissipation exceeds the cooling system’s capacity, the
system will thermally throttle that CPU, for example, by reducing its clock
frequency, as fancifully depicted by the snow penguin in Figure 3.9.

If performance is of the essence, the proper fix is improved cooling, an
approach loved by serious gamers, by overclockers (some of whom make
good use of liquid nitrogen), and by performance-first systems vendors (one
of which used per-CPU aluminum heat sinks, each of which weighed one

49

pound, that is, 0.454 kilograms). But if you cannot modify your computer’s
cooling system, perhaps because you are renting it from a cloud provider,
then you will need to take some other optimization approach. For example,
you might need to apply algorithmic optimizations instead of hardware-
centric micro-optimizations. Alternatively, perhaps you can parallelize your
code, spreading the work (and thus the heat) over multiple CPU cores.

Some recommend normalizing the results of a given test based on the
various CPU core clock frequencies, which can help. However, the latency
of cache misses and memory accesses do not depend on CPU core clock
frequency. In addition, if the code under test features tight interaction among
multiple CPUs, then the performance that code running on one of the CPUs
will depend on the core clock frequencies of those other CPUs.

Finally, if the goal is instead to obtain repeatable benchmark measure-
ments, one approach is to extend traditional cache warmup to include
thermal warmup, with the required warm-up duration depending on the size
and thus the thermal inertia of the system under test.

Another approach for repeatable benchmarks applies to event-based
applications that run in short but widely spaced bursts of latency-critical
execution. In this case, the previous approach’s thermal warmup interval
should be replaced by a cooldown interval during which the system remains
idle.

Even given careful thermal warmup or cooldown, results can vary with
changes in ambient temperature, which can depend strongly on time of day,
to say nothing of time of year in certain parts of the world.

Quick Quiz 3.4: Given a long thermal warmup or cooldown period and a fixed
workload, why would ambient temperature matter? Wl

3.1.7 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache
miss”. As noted earlier, modern CPUs sport large caches in order to reduce
the performance penalty that would otherwise be incurred due to high
memory latencies. However, these caches are actually counter-productive
for variables that are frequently shared among CPUs. This is because when a

50

CACHE-
MISS

TOLL
BOOTH

Figure 3.10: CPU Meets a Cache Miss

given CPU wishes to modify the variable, it is most likely the case that some
other CPU has modified it recently. In this case, the variable will be in that
other CPU’s cache, but not in this CPU’s cache, which will therefore incur
an expensive cache miss (see Appendix C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as shown in Figure 3.10.

Quick Quiz 3.5: So have CPU designers also greatly reduced the overhead of
cache misses? H

3.1.8 I/0O Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such
is one of the cheapest I/O operations available. I/O operations involving
networking, mass storage, or (worse yet) human beings pose much greater
obstacles than the internal obstacles called out in the prior sections, as
illustrated by Figure 3.11.

Please stay on the
line. Your call is very

important to us...

Figure 3.11: CPU Waits for I/O Completion

This is one of the differences between shared-memory and distributed-
system parallelism: Shared-memory parallel programs must normally deal
with no obstacle worse than a cache miss, while a distributed parallel program
will typically incur the larger network communication latencies. In both
cases, the relevant latencies can be thought of as a cost of communication—a
cost that would be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the actual work being
performed is a key design parameter. A major goal of parallel hardware
design is to reduce this ratio as needed to achieve the relevant performance
and scalability goals. In turn, as will be seen in Chapter 6, a major goal of
parallel software design is to reduce the frequency of expensive operations
like communications cache misses.

Of course, it is one thing to say that a given operation is an obstacle,
and quite another to show that the operation is a significant obstacle. This
distinction is discussed in the following sections.

W
)

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
Interconnect Interconnect

~

= -
Memory @’ System Interconnect }e Memory

\\

Z
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPUS5 CPUG6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 3.12: System Hardware Architecture

3.2 Overheads

Don’t design bridges in ignorance of materials, and
don’t design low-level software in ignorance of the
underlying hardware.

UNKNOWN

This section presents actual overheads of the obstacles to performance listed
out in the previous section. However, it is first necessary to get a rough view
of hardware system architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.12 shows a rough schematic of an eight-core computer system. Each
die has a pair of CPU cores, each with its cache, as well as an interconnect
allowing the pair of CPUs to communicate with each other. The system

53

interconnect allows the four dies to communicate with each other and with
main memory.

Data moves through this system in units of “cache lines”, which are
power-of-two fixed-size aligned blocks of memory, usually ranging from 32
to 256 bytes in size. When a CPU loads a variable from memory to one of
its registers, it must first load the cacheline containing that variable into its
cache, which may be thought of as a hardware hash table. Similarly, when a
CPU stores a value from one of its registers into memory, it must also load
the cacheline containing that variable into its cache, but must also ensure
that no other CPU has a copy of that cacheline.

For example, suppose that CPU 1 wrote to a variable x whose cacheline
was in CPU 6’s cache. An over-simplified view of this process is illustrated
by the following sequence of steps in conjunction with Figure 3.13, each
row of which condenses Figure 3.12 to show only CPUs 1 and 6, their store
buffers and local caches, along with the system interconnect denoted by the
grey rectangle connecting the pair of CPUs.

1. CPU 1 checks its local cache, and does not find the cacheline. It
therefore records the write in its store buffer as shown in row A of
Figure 3.13.

2. A request for this cacheline is forwarded to CPU 0’s and 1’s inter-
connect, which checks CPU 1°s local cache, and does not find the
cacheline. Because nothing has changed, the system state is still as
shown in row A of Figure 3.13.

3. This request is forwarded to the system interconnect, as shown in
row B of Figure 3.13, which checks with the other three dies, learning
that the cacheline is held by the die containing CPU 6 and 7.

4. This request is forwarded to CPU 6’s and 7’s interconnect, which
checks both CPUSs’ caches, finding the value in CPU 6’s cache, as
shown in row C of Figure 3.13.

5. CPU 6 forwards the cacheline to its interconnect, and also flushes
the cacheline from its cache, and then CPU 6’s and 7’s interconnect
forwards the cacheline to the system interconnect, as shown in row D
of Figure 3.13.

CPU 1 | Store | Cache Cache | Store | CPU 6

Buffer Buffer
x=3

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer Buffer
x=5 x=3

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer Buffer
=5 | —— TP x=? x=3

CPU1 | Store | Cache | ,_» Cache | Store | CPU 6
Buffer — Buffer
x=5 x=3

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer x=3 < Buffer
x=5

CPU 1 | Store | Cache x=3 | Cache | Store | CPU 6
Buffer -« Buffer
x=5

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer | qg——1— =3 Buffer
x=5

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer Buffer
x=5 x=3

CPU 1 | Store | Cache Cache | Store | CPU 6
Buffer Buffer

x=5

Figure 3.13: Lifetime of a “Simple” Store

v2025.12.18a

55

6. The system interconnect forwards the cacheline to CPU 0’s and 1°s
interconnect, as shown in row E of Figure 3.13.

7. CPU 0’s and 1’s interconnect forwards the cacheline to CPU 1, as
shown in row F of Figure 3.13.

8. The cache line is deposited into CPU 1°s cache, as shown in row G of
Figure 3.13.

9. CPU 1 can now complete the write, updating the relevant portions of
the newly arrived cacheline from the value previously recorded in the
store buffer, as shown in row H of Figure 3.13.

be any more complex? H

Quick Quiz 3.6: This is a simplified sequence of events? How could it possibly ’

‘ Quick Quiz 3.7: Why is it necessary to flush the cacheline from CPU 6’s cache?
|

This simplified sequence is just the beginning of a discipline called
cache-coherency protocols [HP95, CSG99, MHS12, SHW11], which is
discussed in more detail in Appendix C. As can be seen in the sequence of
events triggered by a simple memory write operation, a single instruction
can cause considerable protocol traffic, which can significantly degrade your
parallel program’s performance.

Fortunately, if a given variable is being frequently read during a time
interval during which it is never updated, that variable can be replicated
across all CPUs’ caches. This replication permits all CPUs to enjoy extremely
fast access to this read-mostly variable. Chapter 9 presents synchronization
mechanisms that take full advantage of this important hardware read-mostly
optimization.

3.2.2 Costs of Operations

The overheads of some common operations important to parallel programs
are displayed in Table 3.1. This system’s clock period rounds to 0.5 ns.
Although it is not unusual for modern microprocessors to be able to retire

Table 3.1: CPU 0 View of Synchronization Mechanisms on 8-Socket
System With Intel Xeon Platinum 8176 CPUs @ 2.10 GHz

Ratio
Operation Cost (ns) (cost/clock) CPUs
Clock period 0.5 1.0
Same-CPU 0
CAS 7.0 14.6
lock 154 32.3
On-Core 224
Blind CAS 7.2 15.2
CAS 18.0 37.7
Off-Core 1-27
Blind CAS 47.5 99.8 225-251
CAS 101.9 214.0
Off-Socket 28-111
Blind CAS 148.8 312.5 252-335
CAS 4429 930.1
Cross-Interconnect 112-223
Blind CAS 336.6 706.8 336-447
CAS 944.8 1,984.2
Off-System
Comms Fabric 5,000 10,500

Global Comms 195,000,000 409,500,000

57
multiple instructions per clock period, the operations’ costs are nevertheless
normalized to a clock period in the third column, labeled “Ratio”. The first
thing to note about this table is the large values of many of the ratios.

The same-CPU compare-and-swap (CAS) operation consumes about
seven nanoseconds, a duration more than ten times that of the clock period.
CAS is an atomic operation in which the hardware compares the contents
of the specified memory location to a specified “old” value, and if they
compare equal, stores a specified “new” value, in which case the CAS
operation succeeds. If they compare unequal, the memory location keeps its
(unexpected) value, and the CAS operation fails. The operation is atomic in
that the hardware guarantees that the memory location will not be changed
between the compare and the store. CAS functionality is provided by the
lock;cmpxchg instruction on x86.

The “same-CPU” prefix means that the CPU now performing the CAS
operation on a given variable was also the last CPU to access this variable,
so that the corresponding cacheline is already held in that CPU’s cache.
Similarly, the same-CPU lock operation (a “round trip” pair consisting of a
lock acquisition and release) consumes more than fifteen nanoseconds, or
more than thirty clock cycles. The lock operation is more expensive than
CAS because it requires two atomic operations on the lock data structure,
one for acquisition and the other for release.

On-core operations involving interactions between the hardware threads
sharing a single core are about the same cost as same-CPU operations. This
should not be too surprising, given that these two hardware threads also
share the full cache hierarchy.

In the case of the blind CAS, the software specifies the old value
without looking at the memory location. This approach is appropriate when
attempting to acquire a lock. If the unlocked state is represented by zero
and the locked state is represented by the value one, then a CAS operation
on the lock that specifies zero for the old value and one for the new value
will acquire the lock if it is not already held. The key point is that there is
only one access to the memory location, namely the CAS operation itself.

In contrast, a normal CAS operation’s old value is derived from some
earlier load. For example, to implement an atomic increment, the current
value in a shared variable is loaded into one machine register and then

58

incremented to produce the new value in another machine register. Then
in the CAS operation, the first register is specified as the old value and the
second register as the new value. If the shared variable’s value did not
change in the meantime, the CAS operation would store the new value, thus
incrementing that shared variable. However, if the shared variable’s value
did change, then the old value would not match, causing a miscompare that
would result in the CAS operation failing and thus making no further change
to that shared variable. The key point is that there are now two accesses to
the memory location, the load and the CAS.

Thus, it is not surprising that on-core blind CAS consumes only about
seven nanoseconds, while on-core CAS consumes about 18 nanoseconds.
The non-blind case’s extra load does not come for free. That said, the
overhead of these operations are similar to same-CPU CAS and lock,
respectively.

Quick Quiz 3.8: Table 3.1 shows CPU 0 sharing a core with CPU 224. However,

isn’t it more logical for CPU 0 to share a core with CPU 1 instead of CPU 224777
|

A blind CAS involving CPUs in different cores but on the same socket
consumes almost fifty nanoseconds, or almost one hundred clock cycles.
The code used for this cache-miss measurement passes the cache line back
and forth between a pair of CPUs, so this cache miss is satisfied not from
memory, but rather from the other CPU’s cache. A non-blind CAS operation,
which as noted earlier must look at the old value of the variable as well as
store a new value, consumes over one hundred nanoseconds, or more than
two hundred clock cycles. Think about this a bit. In the time required to do
one CAS operation, the CPU could have executed more than two hundred
normal instructions. This should demonstrate the limitations not only of
fine-grained locking, but of any other synchronization mechanism relying
on fine-grained global agreement.

If the pair of CPUs are on different sockets, the operations are consider-
ably more expensive. A blind CAS operation consumes almost 150 nanosec-
onds, or more than three hundred clock cycles. A normal CAS operation
consumes more than 400 nanoseconds, or almost one thousand clock cycles.

Worse yet, not all pairs of sockets are created equal. This particular
system appears to be constructed as a pair of four-socket components, with

59
Table 3.2: Cache Geometry for 8-Socket System With Intel Xeon Platinum
8176 CPUs @ 2.10 GHz

Level Scope Line Size Sets Ways Size
LO Core 64 64 8 32K
L1 Core 64 64 8 32K
L2 Core 64 1024 16 1024K
L3 Socket 64 57,344 11 39,424K

additional latency penalties when the CPUs reside in different components.
In this case, a blind CAS operation consumes more than three hundred
nanoseconds, or more than seven hundred clock cycles. A CAS operation
consumes almost a full microsecond, or almost two thousand clock cycles.

Quick Quiz 3.9: Surely the hardware designers could be persuaded to improve
this situation! Why have they been content with such abysmal performance for
these single-instruction operations?

Quick Quiz 3.10: Table E.1 in the answer to Quick Quiz 3.9 on page 1093 says
that on-core CAS is faster than both of same-CPU CAS and on-core blind CAS.
What is happening there? W

Unfortunately, the high speed of within-core and within-socket commu-
nication does not come for free. First, there are only two CPUs within a
given core and only 56 within a given socket, compared to 448 across the
system. Second, as shown in Table 3.2, the on-core caches are quite small
compared to the on-socket caches, which are in turn quite small compared
to the 1.4 TB of memory configured on this system. Third, again referring
to the figure, the caches are organized as a hardware hash table with a
limited number of items per bucket. For example, the raw size of the L3
cache (“Size”) is almost 40 MB, but each bucket (“Line”) can only hold 11
blocks of memory (“Ways”), each of which can be at most 64 bytes (“Line
Size”). This means that only 12 bytes of memory (admittedly at carefully
chosen addresses) are required to overflow this 40 MB cache. On the other
hand, equally careful choice of addresses might make good use of the entire
40 MB.

60

Spatial locality of reference is clearly extremely important, as is spreading
the data across memory.

I/O operations are even more expensive. As shown in the “Comms
Fabric” row, high performance (and expensive!) communications fabric,
such as InfiniBand or any number of proprietary interconnects, has a la-
tency of roughly five microseconds for an end-to-end round trip, during
which time more than fen thousand instructions might have been executed.
Standards-based communications networks often require some sort of proto-
col processing, which further increases the latency. Of course, geographic
distance also increases latency, with the speed-of-light through optical fiber
latency around the world coming to roughly 195 milliseconds, or more than
400 million clock cycles, as shown in the “Global Comms” row of Table E.2.

Quick Quiz 3.11: These numbers are insanely large! How can I possibly get my
head around them? W

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and the answer is
“Quite a bit!”

One hardware optimization is large cachelines. This can provide a
big performance boost, especially when software is accessing memory
sequentially. For example, given a 64-byte cacheline and software accessing
64-bit variables, the first access will still be slow due to speed-of-light delays
(if nothing else), but the remaining seven can be quite fast. However, this
optimization has a dark side, namely false sharing, which happens when
different variables in the same cacheline are being updated by different
CPUgs, resulting in a high cache-miss rate.> Software can use the alignment
directives available in many compilers to avoid false sharing, and adding
such directives is a common step in tuning parallel software.

A second related hardware optimization is cache prefetching, in which
the hardware reacts to consecutive accesses by prefetching subsequent
cachelines, thereby evading speed-of-light delays for these subsequent
cachelines. Of course, the hardware must use simple heuristics to determine

3 This situation is sometimes referred to as “cache thrashing” or “cacheline bouncing”.

61

when to prefetch, and these heuristics can be fooled by the complex data-
access patterns in many applications. Fortunately, some CPU families
allow for this by providing special prefetch instructions. Unfortunately, the
effectiveness of these instructions in the general case is the subject of some
dispute.

A third hardware optimization is the store buffer, which allows a string
of store instructions to execute quickly even when the stores are to non-
consecutive addresses and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is memory misordering,
for which see Chapter 15.

A fourth hardware optimization is speculative execution, which can
allow the hardware to make good use of the store buffers without resulting
in memory misordering. The dark side of this optimization can be energy
inefficiency and lowered performance if the speculative execution goes awry
and must be rolled back and retried. Worse yet, the advent of Spectre and
Meltdown [Hor18] made it apparent that hardware speculation can also
enable side-channel attacks that defeat memory-protection hardware so as
to allow unprivileged processes to read memory that they should not have
access to. It is clear that the combination of speculative execution and cloud
computing needs more than a bit of rework!

One could argue that if people would act reasonably, mitigations for
side-channel attacks would not be necessary. However, remotely accessible
computer systems really are often under attack by organized crime and by
nation states, to say nothing of by bored teenagers. There is an old saying “It
only takes a few to spoil things for everyone”, but the reality is that remotely
accessible computer systems must be actively defended from attack.

A fifth hardware optimization is large caches, allowing individual CPUs
to operate on larger datasets without incurring expensive cache misses.
Although large caches can degrade both energy efficiency and cache-miss
latency, the ever-growing cache sizes on production microprocessors attests
to the power of this optimization.

A final hardware optimization is read-mostly replication, in which data
that is frequently read but rarely updated is present in all CPUs’ caches.
This optimization allows the read-mostly data to be accessed exceedingly
efficiently, and is the subject of Chapter 9.

Figure 3.14: Hardware and Software: On Same Side

In short, hardware and software engineers are really on the same side,
with both trying to make computers go fast despite the best efforts of the laws
of physics, as fancifully depicted in Figure 3.14 where our data stream is
trying its best to exceed the speed of light, further hindered by the non-zero
sizes of atoms. The next section discusses some additional things that the
hardware engineers might (or might not) be able to do, depending on how
well recent research translates to practice. Software’s contribution to this
noble goal is outlined in the remaining chapters of this book.

3.3 Hardware Free Lunch?

The great trouble today is that there are too many
people looking for someone else to do something for
them. The solution to most of our troubles is to be
found in everyone doing something for themselves.

HENRY FORD, UPDATED

The major reason that concurrency has been receiving so much focus over
the past few years is the end of Moore’s-Law induced single-threaded
performance increases (or “free lunch” [Sut08]), as shown in Figure 2.1 on

63

page 19. This section briefly surveys a few ways that hardware designers
might bring back the “free lunch”.

However, the preceding section presented some substantial hardware
obstacles to exploiting concurrency. One severe physical limitation that
hardware designers face is the finite speed of light. As noted in Figure 3.12
on page 52, light can manage only about an 8-centimeters round trip in
a vacuum during the duration of a 1.8 GHz clock period. This distance
drops to about 3 centimeters for a 5 GHz clock. Both of these distances are
relatively small compared to the size of modern computer systems.

To make matters even worse, electric waves in silicon move from three to
thirty times more slowly than does light in a vacuum, and common clocked
logic constructs run still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before the request may
be passed on to the rest of the system. Furthermore, relatively low speed
and high power drivers are required to move electrical signals from one
silicon die to another, for example, to communicate between a CPU and
main memory.

Quick Quiz 3.12: But individual electrons don’t move anywhere near that
fast, even in conductors!!! The electron drift velocity in a conductor under
semiconductor voltage levels is on the order of only one millimeter per second.
What gives??? ll

In fact, Stephen Hawking is said to have claimed that semiconductor
manufacturers have but two fundamental problems: (1) The finite speed of
light and (2) The atomic nature of matter [Gar0O7]. That is right, light is too
slow and atoms are too big!!!

There are nevertheless some technologies (both hardware and software)
that might help improve matters:

1. Novel materials and processes,
2. Substituting light for electricity,
3. 3D integration,

4. Special-purpose accelerators, and

64

5. Existing parallel software.

Each of these is described in one of the following sections.

3.3.1 Novel Materials and Processes

It is possible that Stephen Hawking is right, and that semiconductor manu-
facturers are approaching the limits implied by the finite speed of light and
the non-zero sizes of atoms. However, there are a few avenues of research
and development focused on working around these fundamental laws of
physics.

One workaround for the atomic nature of matter are so-called “high-K
dielectric” materials, which allow larger devices to mimic the electrical
properties of infeasibly small devices. These materials pose some severe
fabrication challenges, but nevertheless may help push the frontiers out a
bit farther. Another more-exotic workaround stores multiple bits in a single
electron, relying on the fact that a given electron can exist at a number of
energy levels. It remains to be seen if this particular approach can be made
to work reliably in production semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows
much smaller device sizes, but which is still in the research stage. Yet
another proposed workaround is to replace the atoms making up the base of
a traditional transistor with a vacuum, resulting in the vacuum-gap transistor.

One challenge is that many recent hardware-device-level breakthroughs
require very tight control of which atoms are placed where [Kell7]. It
therefore seems likely that whoever finds a good way to hand-place atoms
on each of the billions of devices on a chip will have most excellent bragging
rights, if nothing else!

3.3.2 Light, Not Electrons

Although the speed of light would be a hard limit, the fact is that semicon-
ductor devices are limited by the speed of electricity rather than that of light,
given that electric waves in semiconductor materials move at between 3 %
and 30 % of the speed of light in a vacuum. The use of copper connections on
silicon devices is one way to increase the speed of electricity, and it is quite

65

70 UT/\

| | -

3cm 1.5¢cm

Figure 3.15: Latency Benefit of 3D Integration

possible that additional advances will push closer still to the actual speed
of light. In addition, there have been some experiments with tiny optical
fibers as interconnects within and between chips, based on the fact that the
speed of light in glass is more than 60 % of the speed of light in a vacuum.
One obstacle to such optical fibers is the inefficiency conversion between
electricity and light and vice versa, resulting in both power-consumption
and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics,
any exponential increases in the speed of data flow will be sharply limited
by the actual speed of light in a vacuum.

3.3.3 3D Integration

3-dimensional integration (3DI) is the practice of bonding very thin silicon
dies to each other in a vertical stack. This practice provides potential
benefits, but also poses significant fabrication challenges [KniO8].

Perhaps the most important benefit of 3DI is decreased path length
through the system, as shown in Figure 3.15. A 3-centimeter silicon die
is replaced with a stack of four 1.5-centimeter dies, in theory decreasing
the maximum path through the system by a factor of two, keeping in mind
that each layer is quite thin. In addition, given proper attention to design
and placement, long horizontal electrical connections (which are both slow
and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

66

Through-Silicon Vias (TSVs),
R Sk fovcas DRAM

; :
GPU etaizaton yer dice R

Y
HBM |controllér die

500 um

e . [
Silicon inte rposer 1024 data links / HBM stack @ 500MHz

Package substrate

solder balls
Graphics card L PCl Express
Electrical current
Multi-layer Printed Circuit Board (PCB), up to 8 layers Display connectors

Figure 3.16: Example 3D Integration

If you cannot make light go faster, make your devices smaller!

However, delays due to levels of clocked logic will not be decreased
by 3D integration, and significant manufacturing, testing, power-supply,
and heat-dissipation problems must be solved for 3D integration to reach
production while still delivering on its promise. The heat-dissipation
problems might be solved using semiconductors based on diamond, which
is a good conductor for heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say nothing of slicing them
into wafers. In addition, it seems unlikely that any of these technologies
will be able to deliver the exponential increases to which some people have
become accustomed. That said, they may be necessary steps on the path to
the late Jim Gray’s “smoking hairy golf balls” [Gra02].

In the meantime, ca. 2020 advances in chiplet* technology have made
serious progress in this direction, as depicted in Figure 3.16. Some
researchers are taking this further, stacking transistors within a single
chip [Mo020, RK22].

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending
significant time and energy doing work that is only tangentially related

4 https://en.wikipedia.org/wiki/Chiplet

https://en.wikipedia.org/wiki/Chiplet

67

to the problem at hand. For example, when taking the dot product of a
pair of vectors, a general-purpose CPU will normally use a loop (possibly
unrolled) with a loop counter. Decoding the instructions, incrementing
the loop counter, testing this counter, and branching back to the top of the
loop are in some sense wasted effort: The real goal is instead to multiply
corresponding elements of the two vectors. Therefore, a specialized piece
of hardware designed specifically to multiply vectors could get the job done
more quickly and with less energy consumed.

This is in fact the motivation for the vector instructions present in many
commodity microprocessors. Because these instructions operate on multiple
data items simultaneously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt,
compress and decompress, encode and decode, and many other tasks besides.
Unfortunately, this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more transistors, which
will consume some power even when not in use. Software must be modified
to take advantage of this specialized hardware, and this specialized hardware
must be sufficiently generally useful that the high up-front hardware-design
costs can be spread over enough users to make the specialized hardware
affordable. In part due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application areas, including
graphics processing (GPUs), vector processors (MMX, SSE, and VMX
instructions), and, to a lesser extent, encryption and compression. And even
in these areas, it is not always easy to realize the expected performance
gains, for example, due to thermal throttling [Kral7, Lem18, Dow20].

Unlike the server and PC arena, smartphones have long used a wide
variety of hardware accelerators. These hardware accelerators are often
used for media decoding, so much so that a high-end MP3 player might
be able to play audio for several minutes—with its CPU fully powered off
the entire time. The purpose of these accelerators is to improve energy
efficiency and thus extend battery life: Special purpose hardware can often
compute more efficiently than can a general-purpose CPU. This is another
example of the principle called out in Section 2.2.3: Generality is almost
never free.

68

Nevertheless, given the end of Moore’s-Law-induced single-threaded
performance increases, it seems safe to assume that increasing varieties
of special-purpose hardware will appear. For example, in the mid-2020s,
many are betting on special-purpose accelerators for artificial-intelligence
and machine-learning workloads.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by
surprise, the fact remains that shared-memory parallel computer systems
have been readily (if expensively) available since at least the 1980s. This is
more than enough time for significant parallel software to make its appear-
ance, and it indeed has. Parallel operating systems are quite commonplace,
as are parallel threading libraries, parallel relational database management
systems, and parallel numerical software. Use of existing parallel software
can go a long ways towards solving any parallel-software crisis we might
encounter.

Perhaps the most common example is the parallel relational database
management system. It is not unusual for single-threaded programs, often
written in high-level scripting languages, to access a central relational
database concurrently. In the resulting highly parallel system, only the
database need actually deal directly with parallelism. A very nice trick
when it works!

3.4 Software Design Implications

One ship drives east and another west
While the self-same breezes blow;
'Tis the set of the sail and not the gail
That bids them where to go.

ELLA WHEELER WILCOX

The values of the ratios in Table 3.1 are critically important, as they limit
the efficiency of a given parallel application. To see this, suppose that the

69

parallel application uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss, that is, assuming
that the threads are communicating primarily with each other rather than
with themselves. Suppose further that the unit of work corresponding to
each CAS communication operation takes 300 ns, which is sufficient time to
compute several floating-point transcendental functions. Then about half of
the execution time will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such a parallel program
would run no faster than a sequential implementation running on a single
CPU.

The situation is even worse in the distributed-system case, where the
latency of a single communications operation might take as long as thousands
or even millions of floating-point operations. This illustrates how important
it is for communications operations to be extremely infrequent and to enable
very large quantities of processing.

Quick Quiz 3.13: Given that distributed-systems communication is so horribly
expensive, why does anyone bother with such systems? H

The lesson should be quite clear: Parallel algorithms must be explicitly
designed with these hardware properties firmly in mind. One approach
is to run nearly independent threads. The less frequently the threads
communicate, whether by atomic operations, locks, or explicit messages, the
better the application’s performance and scalability will be. This approach
will be touched on in Chapter 5, explored in Chapter 6, and taken to its
logical extreme in Chapter 8.

Another approach is to make sure that any sharing be read-mostly, which
allows the CPUSs’ caches to replicate the read-mostly data, in turn allowing
all CPUs fast access. This approach is touched on in Section 5.2.4, and
explored more deeply in Chapter 9.

In short, achieving excellent parallel performance and scalability
means striving for embarrassingly parallel algorithms and implementa-
tions, whether by careful choice of data structures and algorithms, use of
existing parallel applications and environments, or transforming the problem
into an embarrassingly parallel form.

70

Quick Quiz 3.14: OK, if we are going to have to apply distributed-programming
techniques to shared-memory parallel programs, why not just always use these
distributed techniques and dispense with shared memory? H

So, to sum up:

1. The good news is that multicore systems are inexpensive and readily
available.

2. More good news: The overhead of many synchronization operations
is much lower than it was on parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is still high,
especially on large systems.

The remainder of this book describes ways of handling this bad news.

In particular, Chapter 4 will cover some of the low-level tools used for
parallel programming, Chapter 5 will investigate problems and solutions to
parallel counting, and Chapter 6 will discuss design disciplines that promote
performance and scalability.

71

Chapter 4
Tools of the Trade

You are only as good as your tools, and your tools
are only as good as you are.

UNKNOWN

This chapter provides a brief introduction to some basic tools of the parallel-
programming trade, focusing mainly on those available to user applications
running on operating systems similar to Linux. Section 4.1 begins with
scripting languages, Section 4.2 describes the multi-process parallelism
supported by the POSIX API and touches on POSIX threads, Section 4.3
presents analogous operations in other environments, and finally, Section 4.4
helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look more like low-level
synchronization primitives to me! H

Please note that this chapter provides but a brief introduction. More
detail is available from the references (and from the Internet), and more
information will be provided in later chapters.

4.1 Scripting Languages

The supreme excellence is simplicity.

HENRY WADSWORTH LONGFELLOW, SIMPLIFIED

The Linux shell scripting languages provide simple but effective ways
of managing parallelism. For example, suppose that you had a program
compute_it that you needed to run twice with two different sets of argu-
ments. This can be accomplished using UNIX shell scripting as follows:

compute it 1 > compute it 2 >
compute it.l.out & compute it.2.out &

wait

’cat compute_it.l.out ‘

’cat compute it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execution

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[S

Lines 1 and 2 launch two instances of this program, redirecting their
output to two separate files, with the & character directing the shell to run
the two instances of the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their output. The resulting
execution is as shown in Figure 4.1: The two instances of compute_it
execute in parallel, wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real parallel program! Why
bother with such trivia??? W

Quick Quiz 4.3: Is there a simpler way to create a parallel shell script? If so,
how? If not, why not? l

73

For another example, the make software-build scripting language pro-
vides a —j option that specifies how much parallelism should be introduced
into the build process. Thus, typing make -j4 when building a Linux
kernel specifies that up to four build steps be executed concurrently.

It is hoped that these simple examples convince you that parallel
programming need not always be complex or difficult.

Quick Quiz 4.4: But if script-based parallel programming is so easy, why bother
with anything else? H

4.2 POSIX Multiprocessing

A camel is a horse designed by committee.

UNKNOWN

This section scratches the surface of the POSIX environment, including
pthreads [Ope97], as this environment is readily available and widely im-
plemented. Section 4.2.1 provides a glimpse of the POSIX fork() and
related primitives, Section 4.2.2 touches on thread creation and destruction,
Section 4.2.3 gives a brief overview of POSIX locking, and, finally, Sec-
tion 4.2.4 describes a specific lock which can be used for data that is read
by many threads and only occasionally updated.

4.2.1 POSIX Process Creation and Destruction

Processes are created using the fork () primitive, they may be destroyed
using the ki1l () primitive, they may destroy themselves using the exit ()
primitive. A process executing a fork () primitive is said to be the “parent”
of the newly created process. A parent may wait on its children using the
wait () primitive.

Please note that the examples in this section are quite simple. Real-world
applications using these primitives might need to manipulate signals, file
descriptors, shared memory segments, and any number of other resources.
In addition, some applications need to take specific actions if a given child

74

Listing 4.1: Using the fork() Primitive

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 } else if (pid < 0) {

5 /* parent, upon error */

6 perror("fork");

7 exit (EXIT_FAILURE);

8 } else {

9 /* parent, pid == child ID */
10 }

terminates, and might also need to be concerned with the reason that the
child terminated. These issues can of course add substantial complexity to
the code. For more information, see any of a number of textbooks on the
subject [Ste92, Weil3].

If fork () succeeds, it returns twice, once for the parent and again for
the child. The value returned from fork() allows the caller to tell the
difference, as shown in Listing 4.1 (forkjoin.c). Line 1 executes the
fork() primitive, and saves its return value in local variable pid. Line 2
checks to see if pid is zero, in which case, this is the child, which continues
on to execute line 3. As noted earlier, the child may terminate via the
exit () primitive. Otherwise, this is the parent, which checks for an error
return from the fork () primitive on line 4, and prints an error and exits
on lines 5-7 if so. Otherwise, the fork () has executed successfully, and
the parent therefore executes line 9 with the variable pid containing the
process ID of the child.

The parent process may use the wait () primitive to wait for its children
to complete. However, use of this primitive is a bit more complicated than its
shell-script counterpart, as each invocation of wait () waits for but one child
process. It is therefore customary to wrap wait () into a function similar
to the waitall() function shown in Listing 4.2 (api-pthreads.h), with
this waitall () function having semantics similar to the shell-script wait
command. Each pass through the loop spanning lines 6-14 waits on one
child process. Line 7 invokes the wait () primitive, which blocks until a
child process exits, and returns that child’s process ID. If the process ID
is instead —1, this indicates that the wait () primitive was unable to wait
on a child. If so, line 9 checks for the ECHILD errno, which indicates that

75

Listing 4.2: Using the wait () Primitive

1 static __inline__ void waitall(void)

2 {

3 int pid;

4 int status;

5

6 for (;) {

7 pid = wait(&status);

8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;

11 perror("wait");

12 exit (EXIT_FAILURE);
13 }

14 }

15 X

there are no more child processes, so that line 10 exits the loop. Otherwise,
lines 11 and 12 print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need to be so complicated?
Why not just make it work like the shell-script wait does? W

It is critically important to note that the parent and child do not
share memory. This is illustrated by the program shown in Listing 4.3
(forkjoinvar.c), in which the child sets a global variable x to 1 on line 9,
prints a message on line 10, and exits on line 11. The parent continues at
line 20, where it waits on the child, and on line 21 finds that its copy of the
variable x is still zero. The output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there a lot more to fork () and wait () than discussed
here? H

The finest-grained parallelism requires shared memory, and this is
covered in Section 4.2.2. That said, shared-memory parallelism can be
significantly more complex than fork-join parallelism.

76

Listing 4.3: Processes Created Via fork () Do Not Share Memory

1 int x = 0;

3 int main(int argc, char *argv[])

4 {

5 int pid;

6

7 pid = fork(Q);

8 if (pid == 0) { /* child */

9 x = 1;

10 printf("Child process set x=1\n");
11 exit (EXIT_SUCCESS) ;

12 }

13 if (pid < 0) { /* parent, upon error */
14 perror ("fork");

15 exit (EXIT_FAILURE);

16 }

17

18 /* parent */

19

20 waitall();

21 printf ("Parent process sees x=)d\n", x);
2

23 return EXIT_SUCCESS;

21 }

4.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create ()
primitive, for example, as shown on lines 16 and 17 of Listing 4.4 (pcreate.
c). The first argument is a pointer to a pthread_t in which to store the
ID of the thread to be created, the second NULL argument is a pointer to an
optional pthread_attr_t, the third argument is the function (in this case,
mythread()) that is to be invoked by the new thread, and the last NULL
argument is the argument that will be passed to mythread ().

In this example, mythread () simply returns, but it could instead call
pthread_exit ().

Quick Quiz 4.7: If the mythread () function in Listing 4.4 can simply return,
why bother with pthread_exit()? W

The pthread_join() primitive, shown on line 24, is analogous to
the fork-join wait () primitive. It blocks until the thread specified by the
tid variable completes execution, either by invoking pthread_exit ()

77

Listing 4.4: Threads Created Via pthread_create () Share Memory

int x = 0;

1
2

3 void *mythread(void *arg)

4 {

5 x =1;

6 printf("Child process set x=1\n");

7 return NULL;

s }

9

10 int main(int argc, char xargv([])

n A{

12 int en;

13 pthread_t tid;

14 void *vp;

15

16 if ((en = pthread_create(&tid, NULL,

17 mythread, NULL)) != 0) {

18 fprintf (stderr, "pthread_create: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 }

21

2 /* parent */

23

24 if ((en = pthread_join(tid, &vp)) != 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
26 exit (EXIT_FAILURE);

27 }

28 printf ("Parent process sees x=/d\n", x);

29

30 return EXIT_SUCCESS;

31}

78

or by returning from the thread’s top-level function. The thread’s exit
value will be stored through the pointer passed as the second argument to
pthread_join(). The thread’s exit value is either the value passed to
pthread_exit () or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output as follows, demon-
strating that memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only one of the threads
stores a value to variable x at a time. Any situation in which one thread
might be storing a value to a given variable while some other thread either
loads from or stores to that same variable is termed a data race. Because
the C language makes no guarantee that the results of a data race will be in
any way reasonable, we need some way of safely accessing and modifying
data concurrently, such as the locking primitives discussed in the following
section.

But your data races are benign, you say? Well, maybe they are. But
please do everyone (yourself included) a big favor and read Section 4.3.4.1
very carefully. As compilers optimize more and more aggressively, there
are fewer and fewer truly benign data races.

Quick Quiz 4.8: If the C language makes no guarantees in presence of a data
race, then why does the Linux kernel have so many data races? Are you trying to
tell me that the Linux kernel is completely broken??? W

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX
locking”. POSIX locking features a number of primitives, the most fun-
damental of which are pthread_mutex_lock() and pthread_mutex_
unlock (). These primitives operate on locks, which are of type pthread_
mutex_t. These locks may be declared statically and initialized with
PTHREAD_MUTEX_INITIALIZER, or they may be allocated dynamically and

79

initialized using the pthread_mutex_init () primitive. The demonstra-
tion code in this section will take the former course.

The pthread_mutex_lock() primitive “acquires” the specified lock,
and the pthread_mutex_unlock() “releases” the specified lock. Because
these are “exclusive” locking primitives, only one thread at a time may
“hold” a given lock at a given time. For example, if a pair of threads attempt
to acquire the same lock concurrently, one of the pair will be “granted” the
lock first, and the other will wait until the first thread releases the lock. A
simple and reasonably useful programming model permits a given data item
to be accessed only while holding the corresponding lock [Hoa74].

Quick Quiz 4.9: What if [want several threads to hold the same lock at the same
time? W

This exclusive-locking property is demonstrated using the code shown
in Listing 4.5 (1ock. c). Line 1 defines and initializes a POSIX lock named
lock_a, while line 2 similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6-33 define a function lock_reader () which repeatedly reads
the shared variable x while holding the lock specified by arg. Line 12 casts
arg to a pointer to a pthread_mutex_t, as required by the pthread_
mutex_lock() and pthread_mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to lock_reader () on
line 6 of Listing 4.5 be a pointer to a pthread_mutex_t? W

Quick Quiz 4.11: What is the READ_ONCE() on lines 20 and 47 and the
WRITE_ONCE() on line 47 of Listing 4.57 W

Lines 14-18 acquire the specified pthread_mutex_t, checking for
errors and exiting the program if any occur. Lines 19-26 repeatedly check
the value of x, printing the new value each time that it changes. Line 25
sleeps for one millisecond, which allows this demonstration to run nicely
on a uniprocessor machine. Lines 27-31 release the pthread_mutex_t,
again checking for errors and exiting the program if any occur. Finally,
line 32 returns NULL, again to match the function type required by pthread _
create().

Listing 4.5: Demonstration of Exclusive Locks

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3

4 int x = 0;

5

6 void *lock_reader(void *arg)

7 9{

8 int en;

9 int i;

10 int newx = -1;

11 int oldx = -1;

12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {

15 fprintf (stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));

17 exit (EXIT_FAILURE) ;

18 }

19 for (i = 0; i < 100; i++) {

20 newx = READ_ONCE(x);

21 if (newx != oldx) {

2 printf("lock_reader(): x = %d\n", newx);
23 ¥

24 oldx = newx;

25 poll(NULL, 0, 1);

26 }

27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

28 fprintf (stderr, "lock_reader:pthread_mutex_unlock: %s\n",
29 strerror(en));

30 exit (EXIT_FAILURE) ;

31 }

32 return NULL;

3}

34

35 void *lock_writer(void *arg)

36 {

37 int en;

38 int i;

39 pthread_mutex_t *pmlp = (pthread _mutex_t *)arg;

40

41 if ((en = pthread_mutex_lock(pmlp)) != 0) {

0 fprintf (stderr, "lock_writer:pthread mutex_lock: %s\n",
3 strerror(en));

44 exit (EXIT_FAILURE) ;

45 }

46 for (i = 0; i < 3; i++) {

47 WRITE_ONCE(x, READ_ONCE(x) + 1);

48 poll(NULL, O, 5);

49 }

50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

51 fprintf (stderr, "lock_writer:pthread_mutex_unlock: %s\n",
52 strerror(en));

53 exit (EXIT_FAILURE) ;

54 }

55 return NULL;

Listing 4.6: Demonstration of Same Exclusive Lock

1 printf ("Creating two threads using same lock:\n");

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

3 if (en !=0) {

4 fprintf (stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6 ¥

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);

8 if (en !=0) {

9 fprintf (stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

11

12 if ((en = pthread_join(tidl, &vp)) != 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15 i

16 if ((en = pthread_join(tid2, &vp)) != 0) {

17 fprintf(stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

19 ¥

Quick Quiz 4.12: Writing four lines of code for each acquisition and release of a
pthread_mutex_t sure seems painful! Isn’t there a better way? W

Lines 35-56 of Listing 4.5 show lock_writer (), which periodically
updates the shared variable x while holding the specified pthread_mutex_
t. As with lock_reader (), line 39 casts arg to a pointer to pthread_
mutex_t, lines 4145 acquire the specified lock, and lines 50-54 release
it. While holding the lock, lines 46—49 increment the shared variable x,
sleeping for five milliseconds between each increment. Finally, lines 50-54
release the lock.

Listing 4.6 shows a code fragment that runs lock_reader () and lock_
writer () as threads using the same lock, namely, lock_a. Lines 2-6
create a thread running lock_reader (), and then lines 7—11 create a thread
running lock_writer (). Lines 12-19 wait for both threads to complete.
The output of this code fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Listing 4.7: Demonstration of Different Exclusive Locks
printf ("Creating two threads w/different locks:\n");

1

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

4 if (en !'=0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

7 }

8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);

9 if (en !'= 0) {

10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);

12 }

13 if ((en = pthread_join(tidl, &vp)) != 0) {

14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);

16 }

17 if ((en = pthread_join(tid2, &vp)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 i

Because both threads are using the same lock, the lock_reader ()
thread cannot see any of the intermediate values of x produced by lock_
writer () while holding the lock.

Quick Quiz 4.13: Is “x = 0” the only possible output from the code fragment
shown in Listing 4.6? If so, why? If not, what other output could appear, and
why? B

Listing 4.7 shows a similar code fragment, but this time using different
locks: lock_a for lock_reader () and lock_b for lock_writer (). The
output of this code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0

lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x 3

Because the two threads are using different locks, they do not exclude
each other, and can run concurrently. The lock_reader () function can
therefore see the intermediate values of x stored by lock_writer().

83

Quick Quiz 4.14: Using different locks could cause quite a bit of confusion,
what with threads seeing each others’ intermediate states. So should well-written
parallel programs restrict themselves to using a single lock in order to avoid this
kind of confusion? M

Quick Quiz4.15: Inthe code showninListing4.7,is lock_reader () guaranteed
to see all the values produced by lock_writer ()? Why or why not? H

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t initialize shared
variable x, so why does it need to be initialized in Listing 4.7? W

Although there is quite a bit more to POSIX exclusive locking, these
primitives provide a good start and are in fact sufficient in a great many
situations. The next section takes a brief look at POSIX reader-writer
locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a
pthread_rwlock_t. As with pthread_mutex_t, pthread_rwlock_
t may be statically initialized via PTHREAD_RWLOCK_INITIALIZER
or dynamically initialized via the pthread_rwlock_init() primitive.
The pthread_rwlock_rdlock() primitive read-acquires the specified
pthread_rwlock_t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() primitive releases it.
Only a single thread may write-hold a given pthread_rwlock_t at any
given time, but multiple threads may read-hold a given pthread_rwlock_t,
at least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly
situations. In these situations, a reader-writer lock can provide greater
scalability than can an exclusive lock because the exclusive lock is by
definition limited to a single thread holding the lock at any given time,
while the reader-writer lock permits an arbitrarily large number of readers
to concurrently hold the lock. However, in practice, we need to know how
much additional scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of measuring reader-
writer lock scalability. Line 1 shows the definition and initialization of the

84

Listing 4.8: Measuring Reader-Writer Lock Scalability

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
unsigned long holdtime = 0;

unsigned long thinktime = 0;

long long *readcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT O
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;
"

12 void *reader(void *arg)

O K N R W —

13 {

14 int en;

15 int i;

16 long long loopcnt = 0;

17 long me = (long)arg;

18

19 __sync_fetch_and_add(&nreadersrunning, 1);

20 while (READ_ONCE(goflag) == GOFLAG_INIT) {

21 continue;

2 }

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {
25 fprintf (stderr,

2 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 ¥

29 for (i = 1; i < holdtime; i++) {

30 wait_microseconds(1);

31 }

32 if ((en = pthread_rwlock_unlock(&rwl)) !'= 0) {
33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 wait_microseconds(1);

39 }

40 loopcnt++;

41 }

42 readcounts[me] = loopcnt;

43 return NULL;

85

reader-writer lock, line 2 shows the holdtime argument controlling the
time each thread holds the reader-writer lock, line 3 shows the thinktime
argument controlling the time between the release of the reader-writer lock
and the next acquisition, line 4 defines the readcounts array into which
each reader thread places the number of times it acquired the lock, and line 5
defines the nreadersrunning variable, which determines when all reader
threads have started running.

Lines 7-10 define goflag, which synchronizes the start and the end of
the test. This variable is initially set to GOFLAG_INIT, then set to GOFLAG_
RUN after all the reader threads have started, and finally set to GOFLAG_STOP
to terminate the test run.

Lines 12-44 define reader (), which is the reader thread. Line 19
atomically increments the nreadersrunning variable to indicate that this
thread is now running, and lines 20-22 wait for the test to start. The
READ_ONCE () primitive forces the compiler to fetch goflag on each pass
through the loop—the compiler would otherwise be within its rights to
assume that the value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE() everywhere, why not just
declare goflag as volatile on line 10 of Listing 4.8? H

Quick Quiz 4.18: READ_ONCE() only affects the compiler, not the CPU. Don’t
we also need memory barriers to make sure that the change in goflag’s value
propagates to the CPU in a timely fashion in Listing 4.8? W

Quick Quiz 4.19: Would it ever be necessary to use READ_ONCE() when
accessing a per-thread variable, for example, a variable declared using GCC’s
__thread storage class? Wl

The loop spanning lines 23—-41 carries out the performance test.
Lines 24-28 acquire the lock, lines 29-31 hold the lock for the speci-
fied number of microseconds, lines 32—-36 release the lock, and lines 37-39
wait for the specified number of microseconds before re-acquiring the lock.
Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this thread’s element of the
readcounts [] array, and line 43 returns, terminating this thread.

86

ideal 10000us |

1000us

0.1

0.01 |

Critical Section Performance

0.001

0.0001 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability vs. Microseconds in Critical
Section on 8-Socket System With Intel Xeon Platinum 8176 CPUs @
2.10GHz

Figure 4.2 shows the results of running this test on a 224-core Xeon
system with two hardware threads per core for a total of 448 software-visible
CPUs. The thinktime parameter was zero for all these tests, and the
holdtime parameter set to values ranging from one microsecond (“1us” on
the graph) to 10,000 microseconds (“10000us” on the graph). The actual
value plotted is:

Ly

NL;
where N is the number of threads in the current run, L is the total number
of lock acquisitions by all N threads in the current run, and L, is the number
of lock acquisitions in a single-threaded run. Given ideal hardware and
software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking scalability is decidedly
non-ideal, especially for smaller sizes of critical sections. To see why

“.n

87

read-acquisition can be so slow, consider that all the acquiring threads
must update the pthread_rwlock_t data structure. Therefore, if all 448
executing threads attempt to read-acquire the reader-writer lock concurrently,
they must update this underlying pthread_rwlock_t one at a time. One
lucky thread might do so almost immediately, but the least-lucky thread
must wait for all the other 447 threads to do their updates. This situation will
only get worse as you add CPUs. Note also the logscale y-axis. Even though
the 10,000 microsecond trace appears quite ideal, it has in fact degraded by
about 10 % from ideal.

Quick Quiz 4.20: Isn’t comparing against single-CPU throughput a bit harsh?
|

Quick Quiz 4.21: But one microsecond is not a particularly small size for a
critical section. What do I do if I need a much smaller critical section, for example,
one containing only a few instructions? Wl

Quick Quiz 4.22: The system used is a few years old, and new hardware should
be faster. So why should anyone worry about reader-writer locks being slow? H

Despite these limitations, reader-writer locking is quite useful in many
cases, for example when the readers must do high-latency file or network
I/0. There are alternatives, some of which will be presented in Chapters 5
and 9.

4.2.5 Atomic Operations (GCC Classic)

Figure 4.2 shows that the overhead of reader-writer locking is most severe
for the smallest critical sections, so it would be nice to have some other way
of protecting tiny critical sections. One such way uses atomic operations.
We have seen an atomic operation already, namely the __sync_fetch_
and_add () primitive on line 19 of Listing 4.8. This primitive atomically
adds the value of its second argument to the value referenced by its first
argument, returning the old value (which was ignored in this case). If a pair
of threads concurrently execute __sync_fetch_and_add() on the same
variable, the resulting value of the variable will include the result of both
additions.

88

The GNU C compiler offers a number of additional atomic op-
erations, including __sync_fetch_and_sub(), __sync_fetch_and_
or(), __sync_fetch_and_and(), __sync_fetch_and_xor(), and __
sync_fetch_and_nand(), all of which return the old value. If you
instead need the new value, you can instead use the __sync_add_
and_fetch(), __sync_sub_and_fetch(), __sync_or_and_fetch(),
__sync_and_and_fetch(), __sync_xor_and_fetch(), and __sync_
nand_and_fetch() primitives.

[Quick Quiz 4.23: s it really necessary to have both sets of primitives? W]

The classic compare-and-swap operation is provided by a pair
of primitives, __sync_bool_compare_and_swap() and __sync_val_
compare_and_swap(). Both of these primitives atomically update a
location to a new value, but only if its prior value was equal to the specified
old value. The first variant returns 1 if the operation succeeded and O if
it failed, for example, if the prior value was not equal to the specified old
value. The second variant returns the prior value of the location, which,
if equal to the specified old value, indicates that the operation succeeded.
Either of the compare-and-swap operation is “universal” in the sense that
any atomic operation on a single location can be implemented in terms of
compare-and-swap, though the earlier operations are often more efficient
where they apply. The compare-and-swap operation is also capable of
serving as the basis for a wider set of atomic operations, though the more
elaborate of these often suffer from complexity, scalability, and performance
problems [Her90].

Quick Quiz 4.24: Given that these atomic operations will often be able to
generate single atomic instructions that are directly supported by the underlying
instruction set, shouldn’t they be the fastest possible way to get things done? H

The __sync_synchronize() primitive issues a “memory barrier”,
which constrains both the compiler’s and the CPU’s ability to reorder
operations, as discussed in Chapter 15. In some cases, it is sufficient to
constrain the compiler’s ability to reorder operations, while allowing the
CPU free rein, in which case the barrier () primitive may be used. In
some cases, it is only necessary to ensure that the compiler avoids optimizing

89

Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___x = ACCESS_ONCE(x); ___
#define WRITE_ONCE(x, val) \

do { ACCESS_ONCE(x) = (val); } while (0)
#define barrier() __asm volatile__("": : :"memory")

x; B

away a given memory read, in which case the READ_ONCE () primitive may
be used, as it was on line 20 of Listing 4.5. Similarly, the WRITE_ONCE ()
primitive may be used to prevent the compiler from optimizing away a given
memory write. These last three primitives are not provided directly by GCC,
but may be implemented straightforwardly as shown in Listing 4.9, and all
three are discussed at length in Section 4.3.4. Alternatively, READ _ONCE (x)
has much in common with the GCC intrinsic __atomic_load_n(&x,
__ATOMIC_RELAXED) and WRITE_ONCE () has much in common with the
GCC intrinsic __atomic_store_n(&x, v, __ATOMIC_RELAXED).

[Quick Quiz 4.25: What happened to ACCESS_ONCE()? M]

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including loads (atomic_
load()), stores (atomic_store()), memory barriers (atomic_thread_
fence() and atomic_signal_fence()), and read-modify-write atomics.
The read-modify-write atomics include atomic_fetch_add (), atomic_
fetch_sub(),atomic_fetch_and(),atomic_fetch_xor(),atomic_
exchange (), atomic_compare_exchange_strong(), and atomic_
compare_exchange_weak (). These operate in a manner similar to those
described in Section 4.2.5, but with the addition of memory-order arguments
to _explicit variants of all of the operations. Without memory-order
arguments, all the atomic operations are fully ordered, and the arguments
permit weaker orderings. For example, “atomic_load_explicit(&a,
memory_order_relaxed)” is vaguely similar to the Linux kernel’s “READ _
ONCEQ)™.!

! Memory ordering is described in more detail in Chapter 15 and Appendix C.

90

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply only to special atomic
types, which can be problematic. The GNU C compiler therefore pro-
vides atomic intrinsics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store_n(), __atomic_thread_
fence(), etc. These intrinsics offer the same semantics as their C11
counterparts, but may be used on plain non-atomic objects. Some
of these intrinsics may be passed a memory-order argument from this
list: __ATOMIC_RELAXED, _ATOMIC_CONSUME, _ATOMIC_ACQUIRE, _
ATOMIC_RELEASE, _ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data, thread-local storage,
and other less-polite names, are used extremely heavily in concurrent code,
as will be explored in Chapters 5 and 8. POSIX supplies the pthread_
key_create() function to create a per-thread variable (and return the
corresponding key), pthread_key_delete() to delete the per-thread
variable corresponding to key, pthread_setspecific() to set the value
of the current thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __thread specifier
that may be used in a variable definition to designate that variable as being
per-thread. The name of the variable may then be used normally to access the
value of the current thread’s instance of that variable. Of course, __thread
is much easier to use than the POSIX thread-specific data, and so __thread
is usually preferred for code that is to be built only with GCC or other
compilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_local keyword
that can be used in place of __thread. In the fullness of time, this new
keyword should combine the ease of use of __thread with the portability
of POSIX thread-specific data.

91

4.3 Alternatives to POSIX Operations

The strategic marketing paradigm of Open Source is
a massively parallel drunkard’s walk filtered by a
Darwinistic process.

BRucE PERENS

Unfortunately, threading operations, locking primitives, and atomic op-
erations were in reasonably wide use long before the various standards
committees got around to them. As a result, there is considerable variation
in how these operations are supported. It is still quite common to find these
operations implemented in assembly language, either for historical reasons
or to obtain better performance in specialized circumstances. For example,
GCC’s __sync_ family of primitives all provide full memory-ordering
semantics, which in the past motivated many developers to create their own
implementations for situations where the full memory ordering semantics
are not required. The following sections show some alternatives from the
Linux kernel and some historical primitives used by this book’s sample
code.

4.3.1 Organization and Initialization

Although many environments do not require any special initialization
code, the code samples in this book start with a call to smp_init (),
which initializes a mapping from pthread_t to consecutive integers. The
userspace RCU library” similarly requires a call to rcu_init (). Although
these calls can be hidden in environments (such as that of GCC) that support
constructors, most of the RCU flavors supported by the userspace RCU
library also require each thread invoke rcu_register_thread() upon
thread creation and rcu_unregister_thread() before thread exit.

In the case of the Linux kernel, it is a philosophical question as to
whether the kernel does not require calls to special initialization code or

2 See Section 9.5 for more information on RCU.

92

Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func) (void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

whether the kernel’s boot-time code is in fact the required initialization
code.

4.3.2 Thread Creation, Destruction, and Control

The Linux kernel uses struct task_struct pointers to track kthreads,
kthread_create() to create them, kthread_should_stop() to ex-
ternally suggest that they stop (which has no POSIX equivalent),?
kthread_stop() to wait for them to stop, and schedule_timeout_
interruptible() for a timed wait. There are quite a few additional
kthread-management APIs, but this provides a good start, as well as good
search terms.

The CodeSamples API focuses on “threads”, which are a locus of
control.* Each such thread has an identifier of type thread_id_t, and no
two threads running at a given time will have the same identifier. Threads
share everything except for per-thread local state,> which includes program
counter and stack.

The thread API is shown in Listing 4.10, and members are described in
the following section.

4.3.2.1 API Members

create_thread()
The create_thread () primitive creates a new thread, starting the

3 POSIX environments can work around the lack of kthread_should_stop() by using
a properly synchronized boolean flag in conjunction with pthread_join().
4 There are many other names for similar software constructs, including “process”, “task”,

“fiber”, “event”, “execution agent”, and so on. Similar design principles apply to all of them.
5 How is that for a circular definition?

93

new thread’s execution at the function func specified by create_
thread ()’s first argument, and passing it the argument specified by
create_thread()’s second argument. This newly created thread
will terminate when it returns from the starting function specified by
func. The create_thread() primitive returns the thread_id_t
corresponding to the newly created child thread.

This primitive will abort the program if more than NR_THREADS
threads are created, counting the one implicitly created by running
the program. NR_THREADS is a compile-time constant that may be
modified, though some systems may have an upper bound for the
allowable number of threads.

smp_thread_id()
Because the thread_id_t returned from create_thread() is
system-dependent, the smp_thread_id () primitive returns a thread
index corresponding to the thread making the request. This index is
guaranteed to be less than the maximum number of threads that have
been in existence since the program started, and is therefore useful
for bitmasks, array indices, and the like.

for_each_thread()
The for_each_thread () macro loops through all threads that exist,
including all threads that would exist if created. This macro is useful
for handling the per-thread variables introduced in Section 4.2.8.

for_each_running_thread()
The for_each_running_thread () macro loops through only those
threads that currently exist. It is the caller’s responsibility to synchro-
nize with thread creation and deletion if required.

wait_thread()
The wait_thread() primitive waits for completion of the thread
specified by the thread_id_t passed to it. This in no way interferes
with the execution of the specified thread; instead, it merely waits for
it. Note that wait_thread () returns the value that was returned by
the corresponding thread.

94

Listing 4.11: Example Child Thread

| void *thread_test(void *arg)

2 {

3 int myarg = (intptr_t)arg;

4

s printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());

7 return NULL;

8 }

wait_all_threads()
The wait_all_threads() primitive waits for completion of all
currently running threads. It is the caller’s responsibility to synchro-
nize with thread creation and deletion if required. However, this
primitive is normally used to clean up at the end of a run, so such
synchronization is normally not needed.

4.3.2.2 Example Usage

Listing 4.11 (threadcreate. c) shows an example hello-world-like child
thread. As noted earlier, each thread is allocated its own stack, so each
thread has its own private arg argument and myarg variable. Each child
simply prints its argument and its smp_thread_id () before exiting. Note
that the return statement on line 7 terminates the thread, returning a NULL
to whoever invokes wait_thread () on this thread.

The parent program is shown in Listing 4.12. It invokes smp_init ()
to initialize the threading system on line 6, parses arguments on lines 815,
and announces its presence on line 16. It creates the specified number of
child threads on lines 18-19, and waits for them to complete on line 21.
Note that wait_all_threads () discards the threads return values, as in
this case they are all NULL, which is not very interesting.

Quick Quiz 4.26: What happened to the Linux-kernel equivalents to fork ()
and wait ()? M

Listing 4.12: Example Parent Thread

| int main(int argc, char *argv[])

2 {

3 int i;

4 int nkids = 1;

5

6 smp_init () ;

7

8 if (arge > 1) {

9 nkids = strtoul(argv[1], NULL, 0);

10 if (nkids > NR_THREADS) {

11 fprintf(stderr, "nkids = Jd too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14 }

15 }

16 printf ("Parent thread spawning %d threads.\n", nkids);
17

18 for (i = 0; i < nkids; i++)

19 create_thread(thread_test, (void *) (intptr_t)i);
20

21 wait_all_threads();

2

23 printf("All spawned threads completed.\n");

24

25 exit(0);

2 }

Listing 4.13: Locking API

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is shown in
Listing 4.13, each API element being described in the following section.
This book’s CodeSamples locking API closely follows that of the Linux
kernel.

4.3.3.1 API Members

spin_lock_init ()
The spin_lock_init() primitive initializes the specified

96

spinlock_t variable, and must be invoked before this variable
is passed to any other spinlock primitive.

spin_lock()
The spin_lock() primitive acquires the specified spinlock, if neces-
sary, waiting until the spinlock becomes available. In some environ-
ments, such as pthreads, this waiting will involve blocking, while in
others, such as the Linux kernel, it might involve a CPU-bound spin
loop.

The key point is that only one thread may hold a spinlock at any given
time.

spin_trylock()
The spin_trylock() primitive acquires the specified spinlock, but
only if it is immediately available. It returns true if it was able to
acquire the spinlock and false otherwise.

spin_unlock()
The spin_unlock() primitive releases the specified spinlock, allow-
ing other threads to acquire it.

4.3.3.2 Example Usage

A spinlock named mutex may be used to protect a variable counter as
follows:

spin_lock(&mutex) ;
counter++;
spin_unlock (&mutex) ;

Quick Quiz 4.27: What problems could occur if the variable counter were
incremented without the protection of mutex? W

However, the spin_lock() and spin_unlock() primitives do have
performance consequences, as will be seen in Chapter 10.

97

Listing 4.14: Living Dangerously Early 1990s Style
1 ptr = global_ptr;

2 if (ptr != NULL && ptr < high_address)

3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads

1 if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr) ;

4.3.4 Accessing Shared Variables

It was not until 2011 that the C standard defined semantics for concurrent
read/write access to shared variables. However, concurrent C code was
being written at least a quarter century earlier [BK85, Inm85]. This raises
the question as to what today’s greybeards did back in long-past pre-C11
days. A short answer to this question is “they lived dangerously”.

At least they would have been living dangerously had they been using
2021 compilers. In (say) the early 1990s, compilers did fewer optimizations,
in part because there were fewer compiler writers and in part due to the
relatively small memories of that era. Nevertheless, problems did arise, as
shown in Listing 4.14, which the compiler is within its rights to transform
into Listing 4.15. As you can see, the temporary on line 1 of Listing 4.14
has been optimized away, so that global_ptr will be loaded up to three
times.

Quick Quiz 4.28: What is wrong with loading Listing 4.14’s global_ptr up to
three times? M

Section 4.3.4.1 describes additional problems caused by plain accesses,
Sections 4.3.4.2 and 4.3.4.3 describe some pre-C11 solutions. Of course,
where practical, direct C-language memory references should be replaced
by the primitives described in Section 4.2.5 or (especially) Section 4.2.6.
Use these primitives to avoid data races, that is, ensure that if there are
multiple concurrent C-language accesses to a given variable, all of those
accesses are loads.

98

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,® the compiler is within its rights
to assume that the affected variables are neither accessed nor modified by
any other thread. This assumption allows the compiler to carry out a large
number of transformations, including load tearing, store tearing, load fusing,
store fusing, code reordering, invented loads, invented stores, store-to-load
transformations, and dead-code elimination, all of which work just fine in
single-threaded code. But concurrent code can be broken by each of these
transformations, or shared-variable shenanigans, as described below.

Load

Store

tearing occurs when the compiler uses multiple load instructions for
a single access. For example, the compiler could in theory compile
the load from global_ptr (see line 1 of Listing 4.14) as a series
of one-byte loads. If some other thread was concurrently setting
global_ptr to NULL, the result might have all but one byte of the
pointer set to zero, thus forming a “wild pointer”. Stores using such a
wild pointer could corrupt arbitrary regions of memory, resulting in
rare and difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers, the compiler
might have no choice but to use a pair of 8-bit instructions to access
a given pointer. Because the C standard must support all manner of
systems, the standard cannot rule out load tearing in the general case.

tearing occurs when the compiler uses multiple store instructions for
a single access. For example, one thread might store 0x12345678
to a four-byte integer variable at the same time another thread stored
Oxabcdef00. If the compiler used 16-bit stores for either access,
the result might well be 0x1234e£00, which could come as quite
a surprise to code loading from this integer. Nor is this a strictly
theoretical issue. For example, there are CPUs that feature small
immediate instruction fields, and on such CPUs, the compiler might
split a 64-bit store into two 32-bit stores in order to reduce the overhead
of explicitly forming the 64-bit constant in a register, even on a 64-bit

6 That is, normal loads and stores instead of C11 atomics, inline assembly, or volatile
accesses.

99

Listing 4.16: Inviting Load Fusing

I while (!'need_to_stop)

2

do_something_quickly();

Listing 4.17: C Compilers Can Fuse Loads

1
2
3
4
5
6
7
8
9

10
11

13

if (!need_to_stop)
for (5;) {

do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();

Load fusing occurs when the compiler uses the result of a prior load from
a given variable instead of repeating the load. Not only is this sort
of optimization just fine in single-threaded code, it is often just fine
in multithreaded code. Unfortunately, the word “often” hides some
truly annoying exceptions.

CPU. There are historical reports of this actually happening in the
wild (e.g. [KM13]), but there is also a recent report [Deal9].”

Of course, the compiler simply has no choice but to tear some stores
in the general case, given the possibility of code using 64-bit integers
running on a 32-bit system. But for properly aligned machine-sized
stores, WRITE_ONCE () will prevent store tearing.

7 Note that this tearing can happen even on properly aligned and machine-word-sized
accesses, and in this particular case, even for volatile stores. Some might argue that this

behavior constitutes a bug in the compiler, but either way it illustrates the perceived value of
store tearing from a compiler-writer viewpoint.

100

Listing 4.18: C Compilers Can Fuse Non-Adjacent Loads

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17

int *gp;

void t0(void)

{
}

WRITE_ONCE(gp, &myvar);

void ti1(void)

{

}

pl = gp;
do_something(p1l);
p2 = READ_ONCE(gp) ;

if (p2) {
do_something_else();
p3 = *gp;

}

For example, suppose that a real-time system needs to invoke a
function named do_something_quickly() repeatedly until the
variable need_to_stop was set, and that the compiler can see that
do_something_quickly () does not store to need_to_stop. One
(unsafe) way to code this is shown in Listing 4.16. The compiler
might reasonably unroll this loop sixteen times in order to reduce the
per-invocation of the backwards branch at the end of the loop. Worse
yet, because the compiler knows that do_something_quickly()
does not store to need_to_stop, the compiler could quite reasonably
decide to check this variable only once, resulting in the code shown
in Listing 4.17. Once entered, the loop on lines 2—-19 will never exit,
regardless of how many times some other thread stores a non-zero
value to need_to_stop. The result will at best be consternation, and
might well also include severe physical damage.

The compiler can fuse loads across surprisingly large spans of code.
For example, in Listing 4.18, t0() and t1 () run concurrently, and
do_something() and do_something_else() are inline functions.
Line 1 declares pointer gp, which C initializes to NULL by default. At
some point, line 5 of t0() stores a non-NULL pointer to gp. Mean-
while, t1 () loads from gp three times on lines 10, 12, and 15. Given
that line 13 finds that gp is non-NULL, one might hope that the derefer-

101

Listing 4.19: C Compilers Can Fuse Stores

| void shut_it_down(void)

{

}

status = SHUTTING_DOWN; /* BUGGY!!! */

start_shutdown();

while (!other_task_ready) /* BUGGY!!! x/
continue;

finish_shutdown();

status = SHUT_DOWN; /* BUGGY!!! */

do_something_else();

void work_until_shut_down(void)

{

while (status != SHUTTING_DOWN) /* BUGGY!!! x/
do_more_work() ;
other_task_ready = 1; /* BUGGY!!! */

ence on line 15 would be guaranteed never to fault. Unfortunately, the
compiler is within its rights to fuse the read on lines 10 and 15, which
means that if line 10 loads NULL and line 12 loads &myvar, line 15
could load NULL, resulting in a fault.® Note that the intervening
READ_ONCE() does not prevent the other two loads from being fused,
despite the fact that all three are loading from the same variable.

Quick Quiz 4.29: Why does it matter whether do_something() and
do_something_else() in Listing 4.18 are inline functions? H

Store fusing can occur when the compiler notices a pair of successive stores

to a given variable with no intervening loads from that variable. In
this case, the compiler is within its rights to omit the first store. This
is never a problem in single-threaded code, and in fact it is usually
not a problem in correctly written concurrent code. After all, if the
two stores are executed in quick succession, there is very little chance
that some other thread could load the value from the first store.

However, there are exceptions, for example as shown in Listing 4.19.
The function shut_it_down () stores to the shared variable status

8 Will Deacon reports that this happened in the Linux kernel.

102

on lines 3 and §, and so assuming that neither start_shutdown () nor
finish_shutdown() access status, the compiler could reasonably
remove the store to status on line 3. Unfortunately, this would mean
that work_until_shut_down() would never exit its loop spanning
lines 14 and 15, and thus would never set other _task_ready, which
would in turn mean that shut_it_down () would never exit its loop
spanning lines 5 and 6, even if the compiler chooses not to fuse the
successive loads from other_task_ready on line 5.

And there are more problems with the code in Listing 4.19, including
code reordering.

Code reordering is a common compilation technique used to combine
common subexpressions, reduce register pressure, and improve uti-
lization of the many functional units available on modern superscalar
microprocessors. It is also another reason why the code in List-
ing 4.19 is buggy. For example, suppose that the do_more_work ()
function on line 15 does not access other_task_ready. Then
the compiler would be within its rights to move the assignment to
other_task_ready on line 16 to precede line 14, which might be a
great disappointment for anyone hoping that the last call to do_more_
work () on line 15 happens before the call to finish_shutdown ()
on line 7.

It might seem futile to prevent the compiler from changing the order
of accesses in cases where the underlying hardware is free to reorder
them. However, modern machines have exact exceptions and exact
interrupts, meaning that any interrupt or exception will appear to
have happened at a specific place in the instruction stream. This
means that the handler will see the effect of all prior instructions, but
won’t see the effect of any subsequent instructions. READ_ONCE ()
and WRITE_ONCE () can therefore be used to control communication
between interrupted code and interrupt handlers, independent of the
ordering provided by the underlying hardware.’

9 That said, the various standards committees would prefer that you use atomics or
variables of type sig_atomic_t, instead of READ_ONCE() and WRITE_ONCE().

103

Listing 4.20: Inviting an Invented Store

1 if (condition)

2

a=1;

3 else

4

do_a_bunch_of_stuff(&a);

Listing 4.21: Compiler Invents an Invited Store

1 a=1;

2

woB W

if

('condition) {
a = 0;
do_a_bunch_of_stuff (&a);

Invented loads were illustrated by the code in Listings 4.14 and 4.15, in

which the compiler optimized away a temporary variable, thus loading
from a shared variable more often than intended.

Invented loads can be a performance hazard. These hazards can occur
when a load of variable in a “hot” cacheline is hoisted out of an
if statement. These hoisting optimizations are not uncommon, and
can cause significant increases in cache misses, and thus significant
degradation of both performance and scalability.

Invented stores can occur in a number of situations. For example, a com-

piler emitting code for work_until_shut_down() in Listing 4.19
might notice that other_task_ready is not accessed by do_more_
work (), and stored to on line 16. If do_more_work () was a complex
inline function, it might be necessary to do a register spill, in which
case one attractive place to use for temporary storage is other_
task_ready. After all, there are no accesses to it, so what is the
harm?

Of course, a non-zero store to this variable at just the wrong time
would result in the while loop on line 5 terminating prematurely,
again allowing finish_shutdown () to run concurrently with do_
more_work (). Given that the entire point of this while appears to
be to prevent such concurrency, this is not a good thing.

Using a stored-to variable as a temporary might seem outlandish,
but it is permitted by the standard. Nevertheless, readers might be

104

Listing 4.22: Inviting a Store-to-Load Conversion

1 rl = p;

2
3
4
5

if (unlikely(r1))

do_something_with(r1l);

barrier();
p = NULL;

justified in wanting a less outlandish example, which is provided by
Listings 4.20 and 4.21.

A compiler emitting code for Listing 4.20 might know that the value
of a is initially zero, which might be a strong temptation to optimize
away one branch by transforming this code to that in Listing 4.21.
Here, line 1 unconditionally stores 1 to a, then resets the value back
to zero on line 3 if condition was not set. This transforms the
if-then-else into an if-then, saving one branch.

Quick Quiz 4.30: Ouch! So can’t the compiler invent a store to a normal
variable pretty much any time it likes?

Finally, pre-C11 compilers could invent writes to unrelated variables
that happened to be adjacent to written-to variables [Boe05, Section
4.2]. This variant of invented stores has been outlawed by the
prohibition against compiler optimizations that invent data races.

Store-to-load transformations can occur when the compiler notices that

a plain store might not actually change the value in memory. For
example, consider Listing 4.22. Line 1 fetches p, but the “if”
statement on line 2 also tells the compiler that the developer thinks
that p is usually zero.!? The barrier () statement on line 4 forces
the compiler to forget the value of p, but one could imagine a compiler
choosing to remember the hint—or getting an additional hint via
feedback-directed optimization. Doing so would cause the compiler
to realize that line 5 is often an expensive no-op.

10 The unlikely() function provides this hint to the compiler, and different compilers

provide different ways of implementing unlikely ().

105

Listing 4.23: Compiler Converts a Store to a Load

1
2
3
4
5

6

rl =

P

if (unlikely(r1))

do_something_with(r1l);

barrier();
if (p !'= NULL)

p = NULL;

Such a compiler might therefore guard the store of NULL with a
check, as shown on lines 5 and 6 of Listing 4.23. Although this
transformation is often desirable, it could be problematic if the actual
store was required for ordering. For example, a write memory barrier
(Linux kernel smp_wmb ()) would order the store, but not the load.
This situation might suggest use of smp_store_release() over
smp_wmb ().

Dead-code elimination can occur when the compiler notices that the value

from a load is never used, or when a variable is stored to, but never
loaded from. This can of course eliminate an access to a shared
variable, which can in turn defeat a memory-ordering primitive,
which could cause your concurrent code to act in surprising ways.
Experience thus far indicates that relatively few such surprises will
be at all pleasant. Elimination of store-only variables is especially
dangerous in cases where external code locates the variable via symbol
tables: The compiler is necessarily ignorant of such external-code
accesses, and might thus eliminate a variable that the external code
relies upon.

Reliable concurrent code clearly needs a way to cause the compiler
to preserve the number, order, and type of important accesses to shared
memory, a topic taken up by Sections 4.3.4.2 and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of C11 and

C++11 [Becll], the volatile keyword was an indispensable tool in
the parallel programmer’s toolbox. This raises the question of exactly what

106

volatile means, a question that is not answered with excessive precision
even by more recent versions of this standard [Smi19].!! This version guar-
antees that “Accesses through volatile glvalues are evaluated strictly
according to the rules of the abstract machine”, that volatile accesses are
side effects, that they are one of the four forward-progress indicators, and
that their exact semantics are implementation-defined. Perhaps the clearest
guidance is provided by this non-normative note:

volatile is a hint to the implementation to avoid aggressive
optimization involving the object because the value of the object
might be changed by means undetectable by an implementation.
Furthermore, for some implementations, volatile might
indicate that special hardware instructions are required to
access the object. See 6.8.1 for detailed semantics. In general,
the semantics of volatile are intended to be the same in C++
as they are in C.

This wording might be reassuring to those writing low-level code, except
for the fact that compiler writers are free to completely ignore non-normative
notes. Parallel programmers might instead reassure themselves that compiler
writers would like to avoid breaking device drivers (though perhaps only
after a few “frank and open” discussions with device-driver developers),
and device drivers impose at least the following constraints [MWPF18]:

1. Implementations are forbidden from tearing an aligned volatile access
when machine instructions of that access’s size and type are avail-
able.!> Concurrent code relies on this constraint to avoid unnecessary
load and store tearing.

2. Implementations must not assume anything about the semantics of a
volatile access, nor, for any volatile access that returns a value, about
the possible set of values that might be returned.'*> Concurrent code

11" JF Bastien thoroughly documented the history and use cases for the volatile keyword
in C++ [Bas18].

12 Note that this leaves unspecified what to do with 128-bit loads and stores on CPUs
having 128-bit CAS but not 128-bit loads and stores.

13 This is strongly implied by the implementation-defined semantics called out above.

107

Listing 4.24: Avoiding Danger, 2018 Style

1 ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.25: Preventing Load Fusing

1 while (!READ_ONCE(need_to_stop))
2 do_something_quickly();

relies on this constraint to avoid optimizations that are inapplicable
given that other processors might be concurrently accessing the
location in question.

3. Aligned machine-sized non-mixed-size volatile accesses interact
naturally with volatile assembly-code sequences before and after.
This is necessary because some devices must be accessed using a
combination of volatile MMIO accesses and special-purpose assembly-
language instructions. Concurrent code relies on this constraint in
order to achieve the desired ordering properties from combinations
of volatile accesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints to avoid undefined
behavior that could result due to data races if any of the accesses to a given
object was either non-atomic or non-volatile, assuming that all accesses are
aligned and machine-sized. The semantics of mixed-size accesses to the
same locations are more complex, and are left aside for the time being.

So how does volatile stack up against the earlier examples?

Using READ_ONCE() on line 1 of Listing 4.14 avoids invented loads,
resulting in the code shown in Listing 4.24.

As shown in Listing 4.25, READ_ONCE() can also prevent the loop
unrolling in Listing 4.17.

READ_ONCE() and WRITE_ONCE() can also be used to prevent the
store fusing and invented stores that were shown in Listing 4.19, with the
result shown in Listing 4.26. However, this does nothing to prevent code
reordering, which requires some additional tricks taught in Section 4.3.4.3.

108

Listing 4.26: Preventing Store Fusing and Invented Stores

| void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */

4 start_shutdown();

5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! */
6 continue;

7 finish_shutdown();

8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! */

9 do_something_else();

0}

11

12 void work_until_shut_down(void)

13

14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work() ;

16 WRITE_ONCE(other_task_ready, 1); /* BUGGY!!! x/

17 }

Listing 4.27: Disinviting an Invented Store

1 if (condition)

2 WRITE_ONCE(a, 1);
3 else
4 do_a_bunch_of_stuff();

Finally, WRITE_ONCE () can be used to prevent the store invention shown
in Listing 4.20, with the resulting code shown in Listing 4.27.

To summarize, the volatile keyword can prevent load tearing and
store tearing in cases where the loads and stores are machine-sized and
properly aligned. It can also prevent load fusing, store fusing, invented loads,
and invented stores. However, although it does prevent the compiler from
reordering volatile accesses with each other, it does nothing to prevent
the CPU from reordering these accesses. Furthermore, it does nothing to
prevent either compiler or CPU from reordering non-volatile accesses
with each other or with volatile accesses. Preventing these types of
reordering requires the techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by recourse to assembly
language, for example, GCC asm directives. Oddly enough, these direc-

109

Listing 4.28: Preventing C Compilers From Fusing Loads
while (!'need_to_stop) {

1

2 barrier();

3 do_something_quickly();
4 barrier();

5}

tives need not actually contain assembly language, as exemplified by the
barrier () macro shown in Listing 4.9.

In the barrier () macro, the __asm__ introduces the asm directive, the
__volatile__ prevents the compiler from optimizing the asm away, the
empty string specifies that no actual instructions are to be emitted, and the
final "memory" tells the compiler that this do-nothing asm can arbitrarily
change memory. In response, the compiler will avoid moving any memory
references across the barrier () macro. This means that the real-time-
destroying loop unrolling shown in Listing 4.17 can be prevented by adding
barrier () calls as shown on lines 2 and 4 of Listing 4.28. These two lines
of code prevent the compiler from pushing the load from need_to_stop
into or past do_something_quickly () from either direction.

However, this does nothing to prevent the CPU from reordering the
references. In many cases, this is not a problem because the hardware can
only do a certain amount of reordering. However, there are cases such as
Listing 4.19 where the hardware must be constrained. Listing 4.26 prevented
store fusing and invention, and Listing 4.29 further prevents the remaining
reordering by addition of smp_mb() on lines 4, 8, 10, 18, and 21. The
smp_mb () macro is similar to barrier () shown in Listing 4.9, but with
the empty string replaced by a string containing the instruction for a full
memory barrier, for example, "mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very heavyweight? Isn’t there
a cheaper way to enforce the ordering needed in Listing 4.29? Wl

Ordering is also provided by some read-modify-write atomic operations,
some of which are presented in Section 4.3.5. In the general case, memory
ordering can be quite subtle, as discussed in Chapter 15. The next section
covers an alternative to memory ordering, namely limiting or even entirely
avoiding data races.

Listing 4.29: Preventing Reordering

| void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN) ;
4 smp_mb () ;

5 start_shutdown();

6 while (!READ_ONCE(other_task_ready))
7 continue;

8 smp_mb () ;

9 finish_shutdown();

10 smp_mb () ;

11 WRITE_ONCE(status, SHUT_DOWN);

12 do_something_else();

13}

14

15 void work_until_shut_down(void)

16 {

17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb () ;

19 do_more_work();

20 }

21 smp_mb () ;

2 WRITE_ONCE(other_task_ready, 1);
23}

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about concurrently
accessing shared variables!”

“Then stop concurrently accessing shared variables!!!”

The doctor’s advice might seem unhelpful, but one time-tested way to
avoid concurrently accessing shared variables is access those variables only
when holding a particular lock, as will be discussed in Chapter 7. Another
way is to access a given “shared” variable only from a given CPU or thread,
as will be discussed in Chapter 8. It is possible to combine these two
approaches, for example, a given variable might be modified only by a given
CPU or thread while holding a particular lock, and might be read either
from that same CPU or thread on the one hand, or from some other CPU or
thread while holding that same lock on the other. In all of these situations,
all accesses to the shared variables may be plain C-language accesses.

111

Here is a list of situations allowing plain loads and stores for some
accesses to a given variable, while requiring markings (such as READ_
ONCE() and WRITE_ONCE()) for other accesses to that same variable:

1. A shared variable is only modified by a given owning CPU or thread,
but is read by other CPUs or threads. All stores must use WRITE_
ONCE(). The owning CPU or thread may use plain loads. Everything
else must use READ_ONCE () for loads.

2. A shared variable is only modified while holding a given lock, but
is read by code not holding that lock. All stores must use WRITE_
ONCE(). CPUs or threads holding the lock may use plain loads.
Everything else must use READ_ONCE () for loads.

3. A shared variable is only modified while holding a given lock by a
given owning CPU or thread, but is read by other CPUs or threads or
by code not holding that lock. All stores must use WRITE_ONCE().
The owning CPU or thread may use plain loads, as may any CPU or
thread holding the lock. Everything else must use READ_ONCE () for
loads.

4. A shared variable is only accessed by a given CPU or thread and
by a signal or interrupt handler running in that CPU’s or thread’s
context. The handler can use plain loads and stores, as can any
code that has prevented the handler from being invoked, that is, code
that has blocked signals and/or interrupts. All other code must use
READ_ONCE() and WRITE_ONCEQ).

5. A shared variable is only accessed by a given CPU or thread and by a
signal or interrupt handler running in that CPU’s or thread’s context,
and the handler always restores the values of any variables that it has
written before return. The handler can use plain loads and stores, as
can any code that has prevented the handler from being invoked, that
is, code that has blocked signals and/or interrupts. All other code can
use plain loads, but must use WRITE_ONCE () to prevent store tearing,
store fusing, and invented stores.

112

Quick Quiz 4.32: What needs to happen if an interrupt or signal handler might
itself be interrupted? W

In most other cases, loads from and stores to a shared variable must
use READ_ONCE() and WRITE_ONCE() or stronger, respectively. But it
bears repeating that neither READ_ONCE() nor WRITE_ONCE() provide
any ordering guarantees other than within the compiler. See the above
Section 4.3.4.3 or Chapter 15 for information on such guarantees.

Examples of many of these data-race-avoidance patterns are presented
in Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic operations, but those
defined on type atomic_t provide a good start. Normal non-tearing
reads and stores are provided by atomic_read() and atomic_set (),
respectively. Acquire load is provided by smp_load_acquire() and
release store by smp_store_release().

Non-value-returning fetch-and-add operations are provided by atomic_
add (), atomic_sub(), atomic_inc(), and atomic_dec (), among oth-
ers. An atomic decrement that returns a reached-zero indication is pro-
vided by both atomic_dec_and_test () and atomic_sub_and_test().
An atomic add that returns the new value is provided by atomic_add_
return(). Bothatomic_add_unless() and atomic_inc_not_zero()
provide conditional atomic operations, where nothing happens unless the
original value of the atomic variable is different than the value specified
(these are very handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_xchg(), and the
celebrated compare-and-swap (CAS) operation is provided by atomic_
cmpxchg (). Both of these return the old value. Many additional atomic
RMW primitives are available in the Linux kernel, see the Documentation/
atomic_t.txt file in the Linux-kernel source tree.'*

This book’s CodeSamples API closely follows that of the Linux kernel.

14" As of Linux kernel v5.11.

Listing 4.30: Per-Thread-Variable API

DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD (type, name)
per_thread(name, thread)
__get_thread_var (name)
init_per_thread(name, v)

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a per-CPU variable,
this_cpu_ptr() to form a reference to this CPU’s instance of a given
per-CPU variable, per_cpu() to access a specified CPU’s instance of a
given per-CPU variable, along with many other special-purpose per-CPU
operations.

Listing 4.30 shows this book’s per-thread-variable API, which is pat-
terned after the Linux kernel’s per-CPU-variable API. This API provides
the per-thread equivalent of global variables. Although this API is, strictly
speaking, not necessary,'? it can provide a good userspace analogy to Linux
kernel code.

Quick Quiz 4.33: How could you work around the lack of a per-thread-variable
API on systems that do not provide it? H

4.3.6.1 API Members

DEFINE_PER_THREAD ()
The DEFINE_PER_THREAD () primitive defines a per-thread variable.
Unfortunately, it is not possible to provide an initializer in the way
permitted by the Linux kernel’s DEFINE_PER_CPU() primitive, but
there is an init_per_thread () primitive that permits easy runtime
initialization.

DECLARE_PER_THREAD ()
The DECLARE_PER_THREAD() primitive is a declaration in the C
sense, as opposed to a definition. Thus, a DECLARE_PER_THREAD ()

15 You could instead use __thread or _Thread_local.

114

primitive may be used to access a per-thread variable defined in some
other file.

per_thread()
The per_thread () primitive accesses the specified thread’s variable.

__get_thread_var()
The __get_thread_var () primitive accesses the current thread’s
variable.

init_per_thread()
The init_per_thread() primitive sets all threads’ instances of
the specified variable to the specified value. The Linux kernel
accomplishes this via normal C initialization, relying in clever use of
linker scripts and code executed during the CPU-online process.

4.3.6.2 Usage Example

Suppose that we have a counter that is incremented very frequently but
read out quite rarely. As will become clear in Section 5.2, it is helpful to
implement such a counter using a per-thread variable. Such a variable can
be defined as follows:

’DEFINE_PER_THREAD(int, counter) ;

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as follows:

p_counter = &__get_thread_var(counter);
WRITE_ONCE(*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances. A snapshot of
the value of the counter can thus be collected as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

115

Again, it is possible to gain a similar effect using other mechanisms, but
per-thread variables combine convenience and high performance, as will be
shown in more detail in Section 5.2.

Quick Quiz 4.34: What do you do if you need a per-thread (not per-CPU!)
variable in the Linux kernel? Wl

4.4 The Right Tool for the Job: How to Choose?

If you get stuck, change your tools; it may free your
thinking.

PAUL ARDEN, ABBREVIATED

As arough rule of thumb, use the simplest tool that will get the job done. If
you can, simply program sequentially. If that is insufficient, try using a shell
script to mediate parallelism. If the resulting shell-script fork () /exec ()
overhead (about 480 microseconds for a minimal C program on an Intel
Core Duo laptop) is too large, try using the C-language fork () and wait ()
primitives. If the overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might need to use the
POSIX threading primitives, choosing the appropriate locking and/or atomic-
operation primitives. If the overhead of the POSIX threading primitives
(typically sub-microsecond) is too great, then the primitives introduced in
Chapter 9 may be required. Of course, the actual overheads will depend
not only on your hardware, but most critically on the manner in which
you use the primitives. Furthermore, always remember that inter-process
communication and message-passing can be good alternatives to shared-
memory multithreaded execution, especially when your code makes good
use of the design principles called out in Chapter 6.

Quick Quiz 4.35: Wouldn’t the shell normally use vEork () rather than fork () ?
[|

Because concurrency was added to the C standard several decades after
the C language was first used to build concurrent systems, there are a number

116

of ways of concurrently accessing shared variables. All else being equal,
the C11 standard operations described in Section 4.2.6 should be your first
stop. If you need to access a given shared variable both with plain accesses
and atomically, then the modern GCC atomics described in Section 4.2.7
might work well for you. If you are working on an old codebase that uses
the classic GCC __sync API, then you should review Section 4.2.5 as well
as the relevant GCC documentation. If you are working on the Linux kernel
or similar codebase that combines use of the volatile keyword with inline
assembly, or if you need dependencies to provide ordering, look at the
material presented in Section 4.3.4 as well as that in Chapter 15.

Whatever approach you take, please keep in mind that randomly hacking
multi-threaded code is a spectacularly bad idea, especially given that shared-
memory parallel systems use your own arrogance and perceived intelligence
against you: The more arrogant you are and the smarter you think you are,
the deeper a hole you will dig for yourself before you realize that you are
in trouble [Pok16]. Therefore, the wise developer will approach low-level
concurrency with an attitude of deep humility. It is also necessary to make
the right design choices as well as the correct choice of individual primitives,
as will be discussed at length in subsequent chapters.

117

Chapter 5
Counting

Aseasyas 1,2, 3!

UNKNOWN

Counting is perhaps the simplest and most natural thing a computer can
do. However, counting efficiently and scalably on a large shared-memory
multiprocessor can be quite challenging. Furthermore, the simplicity of
the underlying concept of counting allows us to explore the fundamental
issues of concurrency without the distractions of elaborate data structures
or complex synchronization primitives. Counting therefore provides an
excellent introduction to parallel programming.

This chapter covers a number of special cases for which there are simple,
fast, and scalable counting algorithms. But first, let us find out how much
you already know about concurrent counting.

Quick Quiz 5.1: Why should efficient and scalable counting be hard??? After
all, computers have special hardware for the sole purpose of doing counting!!!

Quick Quiz 5.2: Network-packet counting problem. Suppose that you need to
collect statistics on the number of networking packets transmitted and received.
Packets might be transmitted or received by any CPU on the system. Suppose
further that your system is capable of handling millions of packets per second per
CPU, and that a systems-monitoring package reads the count every five seconds.
How would you implement this counter? H

Quick Quiz 5.3: Approximate structure-allocation limit problem. Suppose
that you need to maintain a count of the number of structures allocated in order
to fail any allocations once the number of structures in use exceeds a limit (say,
10,000). Suppose further that the structures are short-lived, the limit is rarely
exceeded, and a “sloppy” approximate limit is acceptable. W

118

Quick Quiz 5.4: Exact structure-allocation limit problem. Suppose that you
need to maintain a count of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived, and that the limit
is rarely exceeded, that there is almost always at least one structure in use, and
suppose further still that it is necessary to know exactly when this counter reaches
zero, for example, in order to free up some memory that is not required unless
there is at least one structure in use. W

Quick Quiz 5.5: Removable I/O device access-count problem. Suppose that
you need to maintain a reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to remove the device. As usual,
the user indicates a desire to remove the device, and the system tells the user when
it is safe to do so.

Section 5.1 shows why counting is non-trivial. Sections 5.2 and 5.3
investigate network-packet counting and approximate structure-allocation
limits, respectively. Section 5.4 takes on exact structure-allocation limits.
Finally, Section 5.5 presents performance measurements and discussion.

Sections 5.1 and 5.2 contain introductory material, while the remaining
sections are more advanced.

5.1 Why Isn’t Concurrent Counting Trivial?

Seek simplicity, and distrust it.

ALFRED NORTH WHITEHEAD

Let’s start with something simple, for example, the straightforward use of
arithmetic shown in Listing 5.1 (count_nonatomic.c). Here, we have a
counter on line 1, we increment it on line 5, and we read out its value on
line 10. What could be simpler?

Quick Quiz 5.6: One thing that could be simpler is ++ instead of that concatenation
of READ_ONCE () and WRITE_ONCE (). Why all that extra typing??? H

119

Listing 5.1: Just Count!

unsigned long counter = 0;

1

2

3 static __inline__ void inc_count(void)

4 1

5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6 }

7

8 static __inline__ unsigned long read_count(void)
9 {

10 return READ_ONCE(counter);

1}

Listing 5.2: Just Count Atomically!
atomic_t counter = ATOMIC_INIT(O);

1

2

3 static __inline__ void inc_count(void)
4 1

5 atomic_inc(&counter);

6 }

7

8 static __inline__ long read_count(void)
9 {

10 return atomic_read(&counter);
1

This approach has the additional advantage of being blazingly fast if you
are doing lots of reading and almost no incrementing, and on small systems,
the performance is excellent.

There is just one large fly in the ointment: This approach can lose counts.
On my six-core x86 laptop, a short run invoked inc_count () 285,824,000
times, but the final value of the counter was only 35,385,525. Although
approximation does have a large place in computing, loss of 87 % of the
counts is a bit excessive.

Quick Quiz 5.7: But can’t a smart compiler prove that line 5 of Listing 5.1 is
equivalent to the ++ operator and produce an x86 add-to-memory instruction?
And won’t the CPU cache cause this to be atomic? Wl

Quick Quiz 5.8: The 8-figure accuracy on the number of failures indicates that
you really did test this. Why would it be necessary to test such a trivial program,
especially when the bug is easily seen by inspection? H

120
100000

10000

N

1000

100

Time Per Increment (ns)

—_
o
LU L B

1 L Ly L

~— o o
~ o

—

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on x86

The straightforward way to count accurately is to use atomic operations,
as shown in Listing 5.2 (count_atomic.c). Line 1 defines an atomic
variable, line 5 atomically increments it, and line 10 reads it out. Because
this is atomic, it keeps perfect count. However, it is slower: On my six-core
x86 laptop, it is more than twenty times slower than non-atomic increment,
even when only a single thread is incrementing.'

This poor performance should not be a surprise, given the discussion
in Chapter 3, nor should it be a surprise that the performance of atomic
increment gets slower as the number of CPUs and threads increase, as shown
in Figure 5.1. In this figure, the horizontal dashed line resting on the x axis
is the ideal performance that would be achieved by a perfectly scalable
algorithm: With such an algorithm, a given increment would incur the same
overhead that it would in a single-threaded program. Atomic increment of

! Interestingly enough, non-atomically incrementing a counter will advance the counter
more quickly than atomically incrementing the counter. Of course, if your only goal is to make
the counter increase quickly, an easier approach is to simply assign a large value to the counter.
Nevertheless, there is likely to be a role for algorithms that use carefully relaxed notions of
correctness in order to gain greater performance and scalability [And91, ACMSO03, Rinl13,
Ungll].

Figure 5.2: Data Flow For Global Atomic Increment

a single global variable is clearly decidedly non-ideal, and gets multiple
orders of magnitude worse with additional CPUs.

Quick Quiz 5.9: Why doesn’t the horizontal dashed line on the x axis meet the
diagonal line at x = 1?7 W

Quick Quiz 5.10: But atomic increment is still pretty fast. And incrementing a
single variable in a tight loop sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing work, not accounting for
the work it has done! Why should I care about making this go faster? W

For another perspective on global atomic increment, consider Figure 5.2.
In order for each CPU to get a chance to increment a given global variable,
the cache line containing that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take significant time,
courtesy of the finite speed of light and the non-zero size of atoms, laws
of physics that were discussed in Section 3.3. This slow circulation will in
turn result in the poor performance seen in Figure 5.1, or as more fancifully
depicted in Figure 5.3. The following sections discuss high-performance
counting, which avoids the delays inherent in such circulation.

122

One one thousand.
Two one thousand.
Three one thousand...

Figure 5.3: Waiting to Count

Quick Quiz 5.11: But why can’t CPU designers simply ship the addition operation
to the data, avoiding the need to circulate the cache line containing the global
variable being incremented? H

5.2 Statistical Counters

Facts are stubborn things, but statistics are pliable.

MARK TWAIN

This section covers the common special case of statistical counters, where
the count is updated extremely frequently and the value is read out rarely,
if ever. These will be used to solve the network-packet counting problem
posed in Quick Quiz 5.2.

Listing 5.3: Array-Based Per-Thread Statistical Counters
DEFINE_PER_THREAD (unsigned long, counter);

1

2

3 static __inline__ void inc_count(void)

4+ 1

5 unsigned long *p_counter = &__get_thread_var(counter);
6

7 WRITE_ONCE(*p_counter, *p_counter + 1);

8 }

9
10 static __inline__ unsigned long read_count (void)

n A{

12 int t;

13 unsigned long sum = 0;

14

15 for_each_thread(t)

16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;

18 ¥

5.2.1 Design

Statistical counting is typically handled by providing a counter per thread
(or CPU, when running in the kernel), so that each thread updates its own
counter, as was foreshadowed in Section 4.3.6 on page 113. The aggregate
value of the counters is read out by simply summing up all of the threads’
counters, relying on the commutative and associative properties of addition.
This is an example of the Data Ownership pattern that will be introduced in
Section 6.3.4 on page 203.

Quick Quiz 5.12: But doesn’t the fact that C’s “integers” are limited in size
complicate things? H

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate an array with one
element per thread (presumably cache aligned and padded to avoid false
sharing).

[Quick Quiz 5.13: An array??? But doesn’t that limit the number of threads? .]

124

Such an array can be wrapped into per-thread primitives, as shown
in Listing 5.3 (count_stat.c). Line 1 defines an array containing a set
of per-thread counters of type unsigned long named, creatively enough,
counter.

Lines 3-8 show a function that increments the counters, using the
__get_thread_var () primitive to locate the currently running thread’s
element of the counter array. Because this element is modified only by the
corresponding thread, non-atomic increment suffices. However, this code
uses WRITE_ONCE() to prevent destructive compiler optimizations. For
but one example, the compiler is within its rights to use a to-be-stored-to
location as temporary storage, thus writing what would be for all intents
and purposes garbage to that location just before doing the desired store.
This could of course be rather confusing to anything attempting to read out
the count. The use of WRITE_ONCE () prevents this optimization and others
besides.

[Quick Quiz 5.14: What other nasty optimizations could GCC apply? W]

Lines 10-18 show a function that reads out the aggregate value of the
counter, using the for_each_thread () primitive to iterate over the list of
currently running threads, and using the per_thread () primitive to fetch
the specified thread’s counter. This code also uses READ_ONCE () to ensure
that the compiler doesn’t optimize these loads into oblivion. For but one
example, a pair of consecutive calls to read_count () might be inlined,
and an intrepid optimizer might notice that the same locations were being
summed and thus incorrectly conclude that it would be simply wonderful to
sum them once and use the resulting value twice. This sort of optimization
might be rather frustrating to people expecting later read_count () calls
to account for the activities of other threads. The use of READ_ONCE ()
prevents this optimization and others besides.

Quick Quiz 5.15: How does the per-thread counter variable in Listing 5.3 get
initialized? H

Quick Quiz 5.16: How is the code in Listing 5.3 supposed to permit more than
one counter? W

125

cPYUD] cPY cPY2] cPY3]

Cache Cache Cache Cache

Interconnect Interconnect
~ =

=

Memory <%| System Interconnect }e Memory

il D

Z= X
Interconnect Interconnect

e | e i | N
logudl] [lagys] logusel| [lsgn]

Figure 5.4: Data Flow For Per-Thread Increment

This approach scales linearly with increasing number of updater threads
invoking inc_count (). As is shown by the green arrows on each CPU in
Figure 5.4, the reason for this is that each CPU can make rapid progress
incrementing its thread’s variable, without any expensive cross-system
communication. In other words, the updating of per-CPU counters is not
inconvenienced by slow light and big atoms? to anywhere near the degree as
is the atomic incrementing of a single global counter. As such, this section
solves the network-packet counting problem presented at the beginning of
this chapter.

Quick Quiz 5.17: The read operation takes time to sum up the per-thread values,
and during that time, the counter could well be changing. This means that the
value returned by read_count () in Listing 5.3 will not necessarily be exact.
Assume that the counter is being incremented at rate r counts per unit time, and
that read_count () ’s execution consumes 4 units of time. What is the expected
error in the return value?

However, many implementations provide cheaper mechanisms for per-
thread data that are free from arbitrary array-size limits. This is the topic of
the next section.

2 Again, see Section 3.3.

126
5.2.3 Per-Thread-Variable-Based Implementation

The C language, since C11, features a _Thread_local storage class that
provides per-thread storage.> This can be used as shown in Listing 5.4
(count_end. c) to implement a statistical counter that not only scales well
and avoids arbitrary thread-number limits, but that also incurs little or
no performance penalty to incrementers compared to simple non-atomic
increment.

Lines 1-4 define needed variables: counter is the per-thread counter
variable, the counterp [] array allows threads to access each others’ coun-
ters, finalcount accumulates the total as individual threads exit, and
final_mutex coordinates between threads accumulating the total value of
the counter and exiting threads.

Quick Quiz 5.18: Doesn’t that explicit counterp array in Listing 5.4 reimpose
an arbitrary limit on the number of threads? Why doesn’t the C language provide
a per_thread() interface, similar to the Linux kernel’s per_cpu() primitive,
to allow threads to more easily access each others’ per-thread variables? H

The inc_count () function used by updaters is quite simple, as can be
seen on lines 6-9.

The read_count () function used by readers is a bit more complex.
Line 16 acquires a lock to exclude exiting threads, and line 21 releases it.
Line 17 initializes the sum to the count accumulated by those threads that
have already exited, and lines 18—20 sum the counts being accumulated by
threads currently running. Finally, line 22 returns the sum.

Quick Quiz 5.19: Doesn’t the check for NULL on line 19 of Listing 5.4 add extra
branch mispredictions? Why not have a variable set permanently to zero, and point
unused counter-pointers to that variable rather than setting them to NULL? H

Quick Quiz 5.20: Why on earth do we need something as heavyweight as a lock
guarding the summation in the function read_count () in Listing 5.4? W

3 Gee provides its own __thread storage class, which was used in previous versions of
this book. The two methods for specifying a thread-local variable are interchangeable when
using GCC.

127

Listing 5.4: Per-Thread Statistical Counters
unsigned long _Thread_local counter 0;
unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

static inline void inc_count(void)
{

WRITE_ONCE(counter, counter + 1);
}

Il static inline unsigned long read_count(void)

12 {

13 int t;

14 unsigned long sum;

15

16 spin_lock(&final_mutex);

17 sum = finalcount;

18 for_each_thread(t)

19 if (counterp[t] !'= NULL)

20 sum += READ_ONCE (*counterp[t]);
21 spin_unlock(&final_mutex) ;

2 return sum;

23 }

2%

25 void count_register_thread(unsigned long *p)
26 {

27 int idx = smp_thread_id();

28

29 spin_lock(&final_mutex);

30 counterp[idx] = &counter;

31 spin_unlock(&final_mutex) ;

2}

33

34 void count_unregister_thread(int nthreadsexpected)
35 {

36 int idx = smp_thread_id();

37

38 spin_lock(&final_mutex);

39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock(&final_mutex) ;

128

Lines 25-32 show the count_register_thread() function, which
must be called by each thread before its first use of this counter. This
function simply sets up this thread’s element of the counterp[] array to
point to its per-thread counter variable.

Quick Quiz 5.21: Why on earth do we need to acquire the lock in count_
register_thread() in Listing 5.4? It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it should be atomic anyway,
right? W

Lines 34-42 show the count_unregister_thread () function, which
must be called prior to exit by each thread that previously called count_
register_thread(). Line 38 acquires the lock, and line 41 releases
it, thus excluding any calls to read_count () as well as other calls to
count_unregister_thread(). Line 39 adds this thread’s counter to
the global finalcount, and then line 40 NULLs out its counterp[] array
entry. A subsequent call to read_count () will see the exiting thread’s
count in the global finalcount, and will skip the exiting thread when
sequencing through the counterp[] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same performance as
a non-atomic add, and also scales linearly. On the other hand, concurrent
reads contend for a single global lock, and therefore perform poorly and
scale abysmally. However, this is not a problem for statistical counters,
where incrementing happens often and readout happens almost never. Of
course, this approach is considerably more complex than the array-based
scheme, due to the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.22: Fine, but the Linux kernel doesn’t have to acquire a lock when
reading out the aggregate value of per-CPU counters. So why should user-space
code need to do this??? W

Both the array-based and _Thread_local-based approaches offer ex-
cellent update-side performance and scalability. However, these benefits
result in large read-side expense for large numbers of threads. The next
section shows one way to reduce read-side expense while still retaining the
update-side scalability.

129
5.2.4 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-
side performance is to weaken consistency requirements. The counting
algorithm in the previous section is guaranteed to return a value between
the value that an ideal counter would have taken on near the beginning
of read_count ()’s execution and that near the end of read_count ()’s
execution. Eventual consistency [Vog09] provides a weaker guarantee: In
absence of calls to inc_count (), calls to read_count () will eventually
return an accurate count.

We exploit eventual consistency by maintaining a global counter. How-
ever, updaters only manipulate their per-thread counters. A separate thread
is provided to transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global counter. If updaters
are active, the value used by the readers will be out of date, however,
once updates cease, the global counter will eventually converge on the true
value—hence this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.5 (count_stat_eventual.
c). Lines 1-2 show the per-thread variable and the global variable that track
the counter’s value, and line 3 shows stopflag which is used to coordinate
termination (for the case where we want to terminate the program with an
accurate counter value). The inc_count () function shown on lines 5-10 is
similar to its counterpart in Listing 5.3. The read_count () function shown
on lines 1215 simply returns the value of the global_count variable.

However, the count_init() function on lines 34-44 creates the
eventual () thread shown on lines 17-32, which cycles through all the
threads, summing the per-thread local counter and storing the sum to
the global_count variable. The eventual () thread waits an arbitrarily
chosen one millisecond between passes.

[Quick Quiz 5.23: Wouldn’t that period scan be bad for battery lifetime? H]

The count_cleanup() function on lines 4651 coordinates termina-
tion. The call to smp_load_acquire () here and the call to smp_store_
release() in eventual () ensure that all updates to global_count are
visible to code following the call to count_cleanup().

)

Listing 5.5: Array-Based Per-Thread Eventually Consistent Counters

15
16
17
18
19
20
21

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

static

{

}

static

{
}

__inline__ void inc_count(void)

unsigned long *p_counter = &__get_thread_var(counter);

WRITE_ONCE(*p_counter, *p_counter + 1);

_inline__ unsigned long read_count (void)

return READ_ONCE(global_count) ;

void *eventual(void *arg)

{

int t;
unsigned long sum;

while (READ_ONCE(stopflag) < 3) {
sum = 0;
for_each_thread(t)
sum += READ_ONCE (per_thread(counter, t));
WRITE_ONCE(global_count, sum);
poll(NULL, 0, 1);
if (READ_ONCE(stopflag))
smp_store_release (&stopflag, stopflag + 1);
}
return NULL;

34 void count_init(void)

43
44
45

}

int en;
pthread_t tid;

en = pthread_create(&tid, NULL, eventual, NULL);

if (en !=0) {
fprintf (stderr, "pthread_create: %s\n", strerror(en));
exit (EXIT_FAILURE);

46 void count_cleanup(void)

47
48
49
50
51

{

}

WRITE_ONCE(stopflag, 1);
while (smp_load_acquire(&stopflag) < 3)
poll(NULL, 0, 1);

131

This approach gives extremely fast counter read-out while still sup-
porting linear counter-update scalability. However, this excellent read-side
performance and update-side scalability comes at the cost of the additional
thread running eventual ().

Quick Quiz 5.24: Why doesn’t inc_count () in Listing 5.5 need to use atomic
instructions? After all, we now have multiple threads accessing the per-thread
counters! H

Quick Quiz 5.25: Won't the single global thread in the function eventual () of
Listing 5.5 be just as severe a bottleneck as a global lock would be? M

Quick Quiz 5.26: Won'’t the estimate returned by read_count () in Listing 5.5
become increasingly inaccurate as the number of threads rises? W

Quick Quiz 5.27: Given that in the eventually-consistent algorithm shown
in Listing 5.5 both reads and updates have extremely low overhead and are
extremely scalable, why would anyone bother with the implementation described
in Section 5.2.2, given its costly read-side code? W

Quick Quiz 5.28: What is the accuracy of the estimate returned by read_
count () in Listing 5.57 W

5.2.5 Discussion

These three implementations show that it is possible to obtain near-
uniprocessor performance for statistical counters, despite running on a
parallel machine.

Quick Quiz 5.29: What fundamental difference is there between counting packets
and counting the total number of bytes in the packets, given that the packets vary
in size? W

Quick Quiz 5.30: Given that the reader must sum all the threads’ counters, this
counter-read operation could take a long time given large numbers of threads. Is
there any way that the increment operation can remain fast and scalable while
allowing readers to also enjoy not only reasonable performance and scalability,
but also good accuracy? W

132

Given what has been presented in this section, you should now be able
to answer the Quick Quiz about statistical counters for networking near the
beginning of this chapter.

5.3 Approximate Limit Counters

An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem.

JOHN TUkEY

Another special case of counting involves limit-checking. For example,
as noted in the approximate structure-allocation limit problem in Quick
Quiz 5.3, suppose that you need to maintain a count of the number of
structures allocated in order to fail any allocations once the number of
structures in use exceeds a limit, in this case, 10,000. Suppose further
that these structures are short-lived, that this limit is rarely exceeded, and
that this limit is approximate in that it is OK either to exceed it sometimes
by some bounded amount or to fail to reach it sometimes, again by some
bounded amount. See Section 5.4 if you instead need the limit to be exact.

5.3.1 Design

One possible design for limit counters is to divide the limit of 10,000 by
the number of threads, and give each thread a fixed pool of structures. For
example, given 100 threads, each thread would manage its own pool of
100 structures. This approach is simple, and in some cases works well, but
it does not handle the common case where a given structure is allocated
by one thread and freed by another [MS93]. On the one hand, if a given
thread takes credit for any structures it frees, then the thread doing most of
the allocating runs out of structures, while the threads doing most of the
freeing have lots of credits that they cannot use. On the other hand, if freed
structures are credited to the CPU that allocated them, it will be necessary

133

for CPUs to manipulate each others’ counters, which will require expensive
atomic instructions or other means of communicating between threads.*

In short, for many important workloads, we cannot fully partition the
counter. Given that partitioning the counters was what brought the excellent
update-side performance for the three schemes discussed in Section 5.2, this
might be grounds for some pessimism. However, the eventually consistent
algorithm presented in Section 5.2.4 provides an interesting hint. Recall
that this algorithm kept two sets of books, a per-thread counter variable for
updaters and a global_count variable for readers, with an eventual ()
thread that periodically updated global_count to be eventually consistent
with the values of the per-thread counter. The per-thread counter perfectly
partitioned the counter value, while global_count kept the full value.

For limit counters, we can use a variation on this theme where we
partially partition the counter. For example, consider four threads with
each having not only a per-thread counter, but also a per-thread maximum
value (call it countermax).

But then what happens if a given thread needs to increment its counter,
but counter is equal to its countermax? The trick here is to move half of
that thread’s counter value to a globalcount, then increment counter.
For example, if a given thread’s counter and countermax variables were
both equal to 10, we do the following:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this thread’s counter.
4. Release the global lock.

5. Increment this thread’s counter, resulting in a value of six.

Although this procedure still requires a global lock, that lock need only
be acquired once for every five increment operations, greatly reducing that
lock’s level of contention. We can reduce this contention as low as we

4 That said, if each structure will always be freed by the same CPU (or thread) that
allocated it, then this simple partitioning approach works extremely well.

134

wish by increasing the value of countermax. However, the corresponding
penalty for increasing the value of countermax is reduced accuracy of
globalcount. To see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most 40 counts. In
contrast, if countermax is increased to 100, globalcount might be in
error by as much as 400 counts.

This raises the question of just how much we care about globalcount’s
deviation from the aggregate value of the counter, where this aggregate
value is the sum of globalcount and each thread’s counter variable. The
answer to this question depends on how far the aggregate value is from
the counter’s limit (call it globalcountmax). The larger the difference
between these two values, the larger countermax can be without risk of
exceeding the globalcountmax limit. This means that the value of a given
thread’s countermax variable can be set based on this difference. When far
from the limit, the countermax per-thread variables are set to large values
to optimize for performance and scalability, while when close to the limit,
these same variables are set to small values to minimize the error in the
checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is an important
design pattern in which the common case executes with no expensive
instructions and no interactions between threads, but where occasional use
is also made of a more conservatively designed (and higher overhead) global
algorithm. This design pattern is covered in more detail in Section 6.4.

5.3.2 Simple Limit Counter Implementation

Listing 5.6 shows both the per-thread and global variables used by this
implementation. The per-thread counter and countermax variables are
the corresponding thread’s local counter and the upper bound on that counter,
respectively. The globalcountmax variable on line 3 contains the upper
bound for the aggregate counter, and the globalcount variable on line 4 is
the global counter. The sum of globalcount and each thread’s counter
gives the aggregate value of the overall counter. The globalreserve
variable on line 5 is at least the sum of all of the per-thread countermax
variables. The relationship among these variables is shown by Figure 5.5:

135

Listing 5.6: Simple Limit Counter Variables

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

R Y N TR

Figure 5.5: Simple Limit Counter Variable Relationships

1. The sum of globalcount and globalreserve must be less than or
equal to globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal
to globalreserve.

3. Each thread’s counter must be less than or equal to that thread’s
countermax.

v2025.12.18a

136

Each element of the counterp[] array references the corresponding
thread’s counter variable, and, finally, the gblcnt_mutex spinlock guards
all of the global variables, in other words, no thread is permitted to access or
modify any of the global variables unless it has acquired gblcnt_mutex.

Listing 5.7 shows the add_count(), sub_count(), and read_
count () functions (count_lim.c).

Quick Quiz 5.31: Why does Listing 5.7 provide add_count () and sub_
count () instead of the inc_count () and dec_count() interfaces show in
Section 5.2? M

Lines 1-18 show add_count (), which adds the specified value delta
to the counter. Line 3 checks to see if there is room for delta on this
thread’s counter, and, if so, line 4 adds it and line 5 returns success. This is
the add_counter () fastpath, and it does no atomic operations, references
only per-thread variables, and should not incur any cache misses.

Quick Quiz 5.32: What is with the strange form of the condition on line 3 of

Listing 5.7? Why not the more intuitive form of the fastpath shown in Listing 5.8?
|

If the test on line 3 fails, we must access global variables, and thus must
acquire gblcnt_mutex on line 7, which we release on line 11 in the failure
case or on line 16 in the success case. Line 8§ invokes globalize_count (),
shown in Listing 5.9, which clears the thread-local variables, adjusting
the global variables as needed, thus simplifying global processing. (But
don’t take my word for it, try coding it yourself!) Lines 9 and 10 check to
see if addition of delta can be accommodated, with the meaning of the
expression preceding the less-than sign shown in Figure 5.5 as the difference
in height of the two red (leftmost) bars. If the addition of delta cannot be
accommodated, then line 11 (as noted earlier) releases gblcnt_mutex and
line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta to globalcount,
and then line 15 invokes balance_count () (shown in Listing 5.9) in
order to update both the global and the per-thread variables. This call to
balance_count () will usually set this thread’s countermax to re-enable
the fastpath. Line 16 then releases gblcnt_mutex (again, as noted earlier),
and, finally, line 17 returns indicating success.

Listing 5.7: Simple Limit Counter Add, Subtract, and Read

1
2
3
4
5
6
7
8
9

10
11
12
13
14

tatic

s
{

}

static

{

}

static

{

}

__inline__ int add_count(unsigned long delta)

if (countermax - counter >= delta) {
WRITE_ONCE(counter, counter + delta);
return 1;

}

spin_lock(&gblcnt_mutex);

globalize_count();

if (globalcountmax -

globalcount - globalreserve < delta) {

spin_unlock(&gblcnt_mutex) ;
return O;

¥

globalcount += delta;

balance_count () ;

spin_unlock(&gblcnt_mutex) ;

return 1;

__inline__ int sub_count(unsigned long delta)

if (counter >= delta) {
WRITE_ONCE(counter, counter - delta);
return 1;

}

spin_lock(&gblcnt_mutex);

globalize_count();

if (globalcount < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;

}

globalcount -= delta;

balance_count();

spin_unlock(&gblcnt_mutex) ;

return 1;

_inline__ unsigned long read_count(void)

int t;
unsigned long sum;

spin_lock(&gblcnt_mutex);
sum = globalcount;
for_each_thread(t) {

if (counterp[t] != NULL)

sum += READ_ONCE (*counterp[t]);

}
spin_unlock(&gblcnt_mutex);
return sum;

Listing 5.8: Intuitive Fastpath

3 if (counter + delta <= countermax) {

4 WRITE_ONCE(counter, counter + delta);
5 return 1;

6 }

Quick Quiz 5.33: Why does globalize_count () zero the per-thread variables,
only to later call balance_count () to refill them in Listing 5.7? Why not just
leave the per-thread variables non-zero? H

Lines 20-36 show sub_count (), which subtracts the specified delta
from the counter. Line 22 checks to see if the per-thread counter can
accommodate this subtraction, and, if so, line 23 does the subtraction and
line 24 returns success. These lines form sub_count () ’s fastpath, and, as
with add_count (), this fastpath executes no costly operations.

If the fastpath cannot accommodate subtraction of delta, execution
proceeds to the slowpath on lines 26-35. Because the slowpath must access
global state, line 26 acquires gblcnt_mutex, which is released either by
line 29 (in case of failure) or by line 34 (in case of success). Line 27
invokes globalize_count (), shown in Listing 5.9, which again clears the
thread-local variables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting delta, and, if
not, line 29 releases gblcnt_mutex (as noted earlier) and line 30 returns
failure.

Quick Quiz 5.34: Given that globalreserve counted against us in add_
count (), why doesn’t it count for us in sub_count () in Listing 5.7? H

Quick Quiz 5.35: Suppose that one thread invokes add_count () shown in
Listing 5.7, and then another thread invokes sub_count (). Won’t sub_count ()
return failure even though the value of the counter is non-zero? W

If, on the other hand, line 28 finds that the counter can accommodate
subtracting delta, we complete the slowpath. Line 32 does the subtraction
and then line 33 invokes balance_count () (shown in Listing 5.9) in order
to update both global and per-thread variables (hopefully re-enabling the
fastpath). Then line 34 releases gblcnt_mutex, and line 35 returns success.

139

Quick Quiz 5.36: Why have both add_count () and sub_count () in List-
ing 5.7? Why not simply pass a negative number to add_count ()? H

Lines 38-51 show read_count (), which returns the aggregate value of
the counter. It acquires gblcnt_mutex on line 43 and releases it on line 49,
excluding global operations from add_count () and sub_count (), and,
as we will see, also excluding thread creation and exit. Line 44 initializes
local variable sum to the value of globalcount, and then the loop spanning
lines 45-48 sums the per-thread counter variables. Line 50 then returns
the sum.

Listing 5.9 shows a number of utility functions used by the add_count (),
sub_count (), and read_count () primitives shown in Listing 5.7.

Lines 1-7 show globalize_count (), which zeros the current thread’s
per-thread counters, adjusting the global variables appropriately. It is
important to note that this function does not change the aggregate value of the
counter, but instead changes how the counter’s current value is represented.
Line 3 adds the thread’s counter variable to globalcount, and line 4
zeroes counter. Similarly, line 5 subtracts the per-thread countermax
from globalreserve, and line 6 zeroes countermax. It is helpful to
refer to Figure 5.5 when reading both this function and balance_count (),
which is next.

Lines 9-19 show balance_count (), which is roughly speaking the
inverse of globalize_count (). This function’s job is to set the current
thread’s countermax variable to the largest value that avoids the risk of
the counter exceeding the globalcountmax limit. Changing the current
thread’s countermax variable of course requires corresponding adjust-
ments to counter, globalcount and globalreserve, as can be seen by
referring back to Figure 5.5. By doing this, balance_count () maximizes
use of add_count ()’s and sub_count ()’s low-overhead fastpaths. As
with globalize_count (), balance_count () is not permitted to change
the aggregate value of the counter.

Lines 11-13 compute this thread’s share of that portion of
globalcountmax that is not already covered by either globalcount
or globalreserve, and assign the computed quantity to this thread’s
countermax. Line 14 makes the corresponding adjustment to
globalreserve. Line 15 sets this thread’s counter to the middle of

Listing 5.9: Simple Limit Counter Utility Functions

| static __inline__ void globalize_count(void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;

6 countermax = 0;

7}

8

9 static __inline__ void balance_count(void)
10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

17 counter = globalcount;

18 globalcount -= counter;

19}

20

21 void count_register_thread(void)

2 {

23 int idx = smp_thread_id();

24

25 spin_lock(&gblcnt_mutex);

26 counterp[idx] = &counter;

27 spin_unlock(&gblcnt_mutex) ;

2% }

29
30 void count_unregister_thread(int nthreadsexpected)

31 {

32 int idx = smp_thread_id();
33

34 spin_lock(&gblcnt_mutex);

35 globalize_count();

36 counterp[idx] = NULL;

37 spin_unlock(&gblcnt_mutex) ;

141

globalize_count () balance_count ()

Figure 5.6: Schematic of Globalization and Balancing

the range from zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of counter, and, if not,
line 17 decreases counter accordingly. Finally, in either case, line 18
makes the corresponding adjustment to globalcount.

Quick Quiz5.37: Why set countertocountermax / 2inline 15 of Listing 5.9?
Wouldn’t it be simpler to just take countermax counts?

It is helpful to look at a schematic depicting how the relationship of
the counters changes with the execution of first globalize_count () and
then balance_count (), as shown in Figure 5.6. Time advances from left
to right, with the leftmost configuration roughly that of Figure 5.5. The
center configuration shows the relationship of these same counters after
globalize_count () is executed by thread 0. As can be seen from the
figure, thread 0’s counter (“c 0” in the figure) is added to globalcount,
while the value of globalreserve is reduced by this same amount. Both

v2025.12.18a

142

thread 0’s counter and its countermax (“cm 0” in the figure) are reduced
to zero. The other three threads’ counters are unchanged. Note that this
change did not affect the overall value of the counter, as indicated by the
bottommost dotted line connecting the leftmost and center configurations.
In other words, the sum of globalcount and the four threads’ counter
variables is the same in both configurations. Similarly, this change did not
affect the sum of globalcount and globalreserve, as indicated by the
upper dotted line.

The rightmost configuration shows the relationship of these counters
after balance_count () is executed, again by thread 0. One-quarter of
the remaining count, denoted by the vertical line extending up from all
three configurations, is added to thread 0’s countermax and half of that
to thread 0’s counter. The amount added to thread 0’s counter is also
subtracted from globalcount in order to avoid changing the overall value
of the counter (which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the lowermost of the
two dotted lines connecting the center and rightmost configurations. The
globalreserve variable is also adjusted so that this variable remains equal
to the sum of the four threads’ countermax variables. Because thread 0’s
counter is less than its countermax, thread O can once again increment
the counter locally.

Quick Quiz 5.38: In Figure 5.6, even though a quarter of the remaining count
up to the limit is assigned to thread O, only an eighth of the remaining count is
consumed, as indicated by the uppermost dotted line connecting the center and the
rightmost configurations. Why is that?

Lines 21-28 show count_register_thread(), which sets up state
for newly created threads. This function simply installs a pointer to the
newly created thread’s counter variable into the corresponding entry of
the counterp[] array under the protection of gblcnt_mutex.

Finally, lines 30—38 show count_unregister_thread(), which tears
down state for a soon-to-be-exiting thread. Line 34 acquires gblcnt_mutex
and line 37 releases it. Line 35 invokes globalize_count () to clear out
this thread’s counter state, and line 36 clears this thread’s entry in the
counterp[] array.

Listing 5.10: Approximate Limit Counter Variables

1 unsigned long __thread counter = 0;

2 unsigned long __thread countermax = 0;

3 unsigned long globalcountmax = 10000;

4 unsigned long globalcount = 0;

5 unsigned long globalreserve = 0;

6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLUCK(gblcnt _mutex);

8 #define MAX_COUNTERMAX 100

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero,
with some overhead due to the comparison and branch in both add_
count ()’s and sub_count () ’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can fail even when the
aggregate value of the counter is nowhere near globalcountmax. Similarly,
sub_count () can fail even when the aggregate value of the counter is
nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax
is intended to be an approximate limit, there is usually a limit to exactly
how much approximation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value of the per-thread
countermax instances. This task is undertaken in the next section.

5.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app.c) is quite similar to that
in the previous section (Listings 5.6, 5.7, and 5.9), only the changes are
shown here. Listing 5.10 is identical to Listing 5.6, with the addition
of MAX_COUNTERMAX, which sets the maximum permissible value of the
per-thread countermax variable.

Similarly, Listing 5.11 is identical to the balance_count () function
in Listing 5.9, with the addition of lines 6 and 7, which enforce the MAX _
COUNTERMAX limit on the per-thread countermax variable.

144

Listing 5.11: Approximate Limit Counter Balancing

1 static void balance_count(void)

2 {

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();

6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;

10 if (counter > globalcount)

11 counter = globalcount;
12 globalcount -= counter;

13}

5.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous
version, but present another problem: Any given value of MAX_COUNTERMAX
will cause a workload-dependent fraction of accesses to fall off the fastpath.
As the number of threads increase, non-fastpath execution will become
both a performance and a scalability problem. However, we will defer this
problem and turn instead to counters with exact limits.

5.4 Exact Limit Counters

Exactitude can be expensive. Spend wisely.

UNKNOWN

To solve the exact structure-allocation limit problem noted in Quick Quiz 5.4,
we need a limit counter that can tell exactly when its limits are exceeded.
One way of implementing such a limit counter is to cause threads that
have reserved counts to give them up. One way to do this is to use atomic
instructions. Of course, atomic instructions will slow down the fastpath, but
on the other hand, it would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementation

Unfortunately, if one thread is to safely remove counts from another thread,
both threads will need to atomically manipulate that thread’s counter and
countermax variables. The usual way to do this is to combine these two
variables into a single variable, for example, given a 32-bit variable, using
the high-order 16 bits to represent counter and the low-order 16 bits to
represent countermax.

Quick Quiz 5.39: Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t it be good enough to
atomically manipulate them individually? W

The variables and access functions for a simple atomic limit counter
are shown in Listing 5.12 (count_lim_atomic.c). The counter and
countermax variables in earlier algorithms are combined into the single
variable counterandmax shown on line 1, with counter in the upper half
and countermax in the lower half. This variable is of type atomic_t,
which has an underlying representation of int.

Lines 2-6 show the definitions for globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex, all of which take on
roles similar to their counterparts in Listing 5.10. Line 7 defines CM_BITS,
which gives the number of bits in each half of counterandmax, and line 8
defines MAX_COUNTERMAX, which gives the maximum value that may be
held in either half of counterandmax.

Quick Quiz 5.40: In what way does line 7 of Listing 5.12 violate the C standard?
|

Lines 10-15 show the split_counterandmax_int () function, which,
when given the underlying int from the atomic_t counterandmax vari-
able, splits it into its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int, placing the result as
specified by argument c, and line 14 isolates the least-significant half of this
int, placing the result as specified by argument cm.

Lines 17-24 show the split_counterandmax () function, which picks
up the underlying int from the specified variable on line 20, stores it

146

Listing 5.12: Atomic Limit Counter Variables and Access Functions

atomic_t __thread counterandmax = ATOMIC_INIT(O);
unsigned long globalcountmax = 1 << 25;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

atomic_t *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define CM_BITS (sizeof (atomic_t) * 4)

#define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

static __inline__ void
split_counterandmax_int(int cami, int *c, int *cm)
{
*c = (cami >> CM_BITS) & MAX_COUNTERMAX;
*cm = cami & MAX_COUNTERMAX;

}

static __inline__ void
split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
{

unsigned int cami = atomic_read(cam);

*0ld = cami;
split_counterandmax_int(cami, c, cm);

}

static __inline_

p -

int merge_counterandmax(int c, int cm)

unsigned int camij;

cami = (c << CM_BITS) | cm;
return ((int)cami);

147

as specified by the old argument on line 22, and then invokes split_
counterandmax_int () to split it on line 23.

Quick Quiz 5.41: Given that there is only one counterandmax variable, why
bother passing in a pointer to it on line 18 of Listing 5.12? H

Lines 26-32 show the merge_counterandmax () function, which can
be thought of as the inverse of split_counterandmax(). Line 30 merges
the counter and countermax values passed in ¢ and cm, respectively, and
returns the result.

Quick Quiz 5.42: Why does merge_counterandmax () in Listing 5.12 return
an int rather than storing directly into an atomic_t? H

Listing 5.13 shows the add_count () and sub_count () functions.

Lines 1-32 show add_count (), whose fastpath spans lines 8-15, with
the remainder of the function being the slowpath. Lines 8—14 of the fastpath
form a compare-and-swap (CAS) loop, with the atomic_cmpxchg() prim-
itive on lines 13—14 performing the actual CAS. Line 9 splits the current
thread’s counterandmax variable into its counter (in c) and countermax
(in cm) components, while placing the underlying int into old. Line 10
checks whether the amount delta can be accommodated locally (taking
care to avoid integer overflow), and if not, line 11 transfers to the slow-
path. Otherwise, line 12 combines an updated counter value with the
original countermax value into new. The atomic_cmpxchg() primitive
on lines 13—14 then atomically compares this thread’s counterandmax
variable to old, updating its value to new if the comparison succeeds. If
the comparison succeeds, line 15 returns success, otherwise, execution
continues in the loop at line 8.

Quick Quiz 5.43: Yecch! Why the ugly goto on line 11 of Listing 5.13? Haven’t
you heard of the break statement??? H

Quick Quiz 5.44: Why would the atomic_cmpxchg() primitive at lines 13—14
of Listing 5.13 ever fail? After all, we picked up its old value on line 9 and have
not changed it! Wl

Lines 16-31 of Listing 5.13 show add_count () ’s slowpath, which is
protected by gblcnt_mutex, which is acquired on line 17 and released

148

Listing 5.13: Atomic Limit Counter Add and Subtract

I int add_count(unsigned long delta)

2 {

3 int c;

4 int cm;

5 int old;

6 int new;

7

8 do {

9 split_counterandmax (4counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;

12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,

14 old, new) != old);
15 return 1;

16 slowpath:

17 spin_lock(&gblcnt_mutex) ;

18 globalize_count();

19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock(&gblcnt_mutex) ;
25 return 0;

26 }

27 ¥

28 globalcount += delta;

29 balance_count();

30 spin_unlock(&gblcnt_mutex) ;

31 return 1;

2}

33

34 int sub_count (unsigned long delta)

35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

2 split_counterandmax(&counterandmax, &old, &c, &cm);
3 if (delta > c)

44 goto slowpath;

45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,

47 old, new) != old);
48 return 1;

49 slowpath:

50 spin_lock(&gblcnt_mutex) ;

51 globalize_count();

52 if (globalcount < delta) {

53 flush_local_count();

54 if (globalcount < delta) {

55 spin_unlock(&gblcnt_mutex) ;
56 return 0;

57 ¥

58 }

59 globalcount -= delta;

60 balance_count () ;

spin_unlock(&gblcnt_mutex) ;
return 1;

149

Listing 5.14: Atomic Limit Counter Read

| unsigned long read_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock(&gblcnt_mutex) ;

10 sum = globalcount;

11 for_each_thread(t) {

12 if (counterp[t] != NULL) {
13 split_counterandmax (counterp[t], &old, &c, &cm);
14 sum += c;

15 }

16 }

17 spin_unlock(&gblcnt_mutex) ;

18 return sum;

19}

on lines 24 and 30. Line 18 invokes globalize_count (), which moves
this thread’s state to the global counters. Lines 19-20 check whether the
delta value can be accommodated by the current global state, and, if not,
line 21 invokes flush_local_count () to flush all threads’ local state
to the global counters, and then lines 22-23 recheck whether delta can
be accommodated. If, after all that, the addition of delta still cannot be
accommodated, then line 24 releases gblcnt_mutex (as noted earlier), and
then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads
counts to the local state if appropriate, line 30 releases gblcnt_mutex
(again, as noted earlier), and finally, line 31 returns success.

Lines 34-63 of Listing 5.13 show sub_count (), which is structured
similarly to add_count (), having a fastpath on lines 41-48 and a slowpath
on lines 49-62. A line-by-line analysis of this function is left as an exercise
to the reader.

Listing 5.14 shows read_count (). Line 9 acquires gblcnt_mutex
and line 17 releases it. Line 10 initializes local variable sum to the value
of globalcount, and the loop spanning lines 11-16 adds the per-thread
counters to this sum, isolating each per-thread counter using split_
counterandmax on line 13. Finally, line 18 returns the sum.

Listing 5.15: Atomic Limit Counter Utility Functions 1

I static void globalize_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6

7 split_counterandmax (&counterandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);

11 atomic_set (&counterandmax, old);
12}

13

14 static void flush_local_count(void)

15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

2 if (globalreserve == 0)

23 return;

24 zero = merge_counterandmax (0, 0);

25 for_each_thread(t) {

26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int (old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;
31 }

32 }

Listing 5.16: Atomic Limit Counter Utility Functions 2

1
2
3
4
5
6
7
8
9

10
11

12

21
22
23

s
{

}

tatic void balance_count(void)

int c;

int cm;

int old;

unsigned long limit;

limit = globalcountmax - globalcount -
globalreserve;
limit /= num_online_threads();
if (limit > MAX_COUNTERMAX)
cm = MAX_COUNTERMAX;
else
cm = limit;
globalreserve += cm;
c=cm/ 2;
if (c > globalcount)
c = globalcount;
globalcount -= c;
old = merge_counterandmax(c, cm);
atomic_set (&counterandmax, old);

24 void count_register_thread(void)

25

33
34

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
counterp[idx] = &counterandmax;
spin_unlock(&gblcnt_mutex) ;

void count_unregister_thread(int nthreadsexpected)

{

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
globalize_count();
counterp[idx] = NULL;
spin_unlock(&gblcnt_mutex) ;

152

Listings 5.15 and 5.16 show the utility functions globalize_count (),
flush_local_count(), balance_count (), count_register_
thread(), and count_unregister_thread(). The code for
globalize_count () is shown on lines 1-12 of Listing 5.15, and is similar
to that of previous algorithms, with the addition of line 7, which is now
required to split out counter and countermax from counterandmax.

The code for f1lush_local_count (), which moves all threads’ local
counter state to the global counter, is shown on lines 14-33. Line 22
checks to see if the value of globalreserve permits any per-thread counts,
and, if not, line 23 returns. Otherwise, line 24 initializes local variable
zero to a combined zeroed counter and countermax. The loop spanning
lines 25-32 sequences through each thread. Line 26 checks to see if the
current thread has counter state, and, if so, lines 27—30 move that state to the
global counters. Line 27 atomically fetches the current thread’s state while
replacing it with zero. Line 28 splits this state into its counter (in local
variable c) and countermax (in local variable cm) components. Line 29
adds this thread’s counter to globalcount, while line 30 subtracts this
thread’s countermax from globalreserve.

Quick Quiz 5.45: What stops a thread from simply refilling its counterandmax
variable immediately after flush_local_count () on line 14 of Listing 5.15
empties it? W

Quick Quiz 5.46: What prevents concurrent execution of the fastpath of
either add_count () or sub_count () from interfering with the counterandmax
variable while flush_local_count () is accessing it on line 27 of Listing 5.15?

Lines 1-22 on Listing 5.16 show the code for balance_count (),
which refills the calling thread’s local counterandmax variable. This
function is quite similar to that of the preceding algorithms, with changes
required to handle the merged counterandmax variable. Detailed analy-
sis of the code is left as an exercise for the reader, as it is with the
count_register_thread() function starting on line 24 and the count_
unregister_thread() function starting on line 33.

153

Quick Quiz 5.47: How can line 21 of balance_count () in Listing 5.16 work
correctly in face of concurrent flush_local_count () updates to this variable?

Quick Quiz 5.48: Does the atomic_set () primitive in balance_count ()
really need to be atomic? H

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run all
the way to either of its limits, but it does so at the expense of adding atomic
operations to the fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate this slowdown, it
is worthwhile looking for algorithms with better write-side performance.
One such algorithm uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled thread, atomic
operations are not necessary, as shown in the next section.

Quick Quiz 5.49: But signal handlers can be migrated to some other CPU while
running. Doesn’t this possibility require that atomic instructions and memory
barriers are required to reliably communicate between a thread and a signal handler
that interrupts that thread? W

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated only by the corre-
sponding thread, there will still need to be synchronization with the signal
handlers. This synchronization is provided by the state machine shown in
Figure 5.7.

The state machine starts out in the IDLE state, and when add_count ()
or sub_count () find that the combination of the local thread’s count and the
global count cannot accommodate the request, the corresponding slowpath
sets each thread’s theft state to REQ (unless that thread has no count, in
which case it transitions directly to READY). Only the slowpath, which

Figure 5.7: Signal-Theft State Machine

holds the gblcnt_mutex lock, is permitted to transition from the IDLE
state, as indicated by the green color.” The slowpath then sends a signal to
each thread, and the corresponding signal handler checks the corresponding
thread’s theft and counting variables. If the theft state is not REQ,
then the signal handler is not permitted to change the state, and therefore
simply returns. Otherwise, if the counting variable is set, indicating that
the current thread’s fastpath is in progress, the signal handler sets the theft
state to ACK, otherwise to READY.

If the theft state is ACK, only the fastpath is permitted to change the
theft state, as indicated by the blue color. When the fastpath completes, it
sets the theft state to READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath
is permitted to steal that thread’s count. The slowpath then sets that thread’s
theft state to IDLE.

5 For those with black-and-white versions of this book, IDLE and READY are green, REQ
is red, and ACK is blue.

Listing 5.17: Signal-Theft Limit Counter Data

#define THEFT_IDLE 0
#define THEFT_REQ 1
#define THEFT_ACK 2
#define THEFT_READY 3

int __thread theft = THEFT_IDLE;

int __thread counting = 0;

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;

11 unsigned long globalcount = 0;

12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK(gblcnt_mutex);

17 #define MAX_COUNTERMAX 100

® N w kW —

©

[Quick Quiz 5.50: In Figure 5.7, why is the REQ theft state colored red? H]

Quick Quiz 5.51: In Figure 5.7, what is the point of having separate REQ and
ACK theft states? Why not simplify the state machine by collapsing them into a
single REQACK state? Then whichever of the signal handler or the fastpath gets
there first could set the state to READY. H

5.4.4 Signal-Theft Limit Counter Implementation

Listing 5.17 (count_lim_sig.c) shows the data structures used by the
signal-theft based counter implementation. Lines 1-7 define the states and
values for the per-thread theft state machine described in the preceding
section. Lines 8—17 are similar to earlier implementations, with the addition
of lines 14 and 15 to allow remote access to a thread’s countermax and
theft variables, respectively.

Listing 5.18 shows the functions responsible for migrating counts be-
tween per-thread variables and the global variables. Lines 1-7 show
globalize_count (), which is identical to earlier implementations.
Lines 9-16 show flush_local_count_sig(), which is the signal handler
used in the theft process. Lines 11 and 12 check to see if the theft state is
REQ, and, if not returns without change. Line 13 sets the theft state to
ACK, and, if line 14 sees that this thread’s fastpaths are not running, line 15

156

uses smp_store_release() to set the theft state to READY, further
ensuring that any change to counter in the fastpath happens before this
change of theft to READY.

Quick Quiz 5.52: In Listing 5.18, doesn’t f1lush_local_count_sig() need
stronger memory barriers? W

Lines 18-47 show flush_local_count (), which is called from the
slowpath to flush all threads’ local counts. The loop spanning lines 23-32
advances the theft state for each thread that has local count, and also sends
that thread a signal. Line 24 skips any non-existent threads. Otherwise,
line 25 checks to see if the current thread holds any local count, and, if not,
line 26 sets the thread’s theft state to READY and line 27 skips to the next
thread. Otherwise, line 29 sets the thread’s theft state to REQ and line 30
sends the thread a signal.

Quick Quiz 5.53: In Listing 5.18, why is it safe for line 25 to directly access the
other thread’s countermax variable? Wl

Quick Quiz 5.54: In Listing 5.18, why doesn’t line 30 check for the current
thread sending itself a signal? W

Quick Quiz 5.55: The code shown in Listings 5.17 and 5.18 works with GCC and
POSIX. What would be required to make it also conform to the ISO C standard?
|

The loop spanning lines 33—46 waits until each thread reaches READY
state, then steals that thread’s count. Lines 34-35 skip any non-existent
threads, and the loop spanning lines 3640 waits until the current thread’s
theft state becomes READY. Line 37 blocks for a millisecond to avoid
priority-inversion problems, and if line 38 determines that the thread’s
signal has not yet arrived, line 39 resends the signal. Execution reaches
line 41 when the thread’s theft state becomes READY, so lines 41-44 do
the thieving. Line 45 then sets the thread’s theft state back to IDLE.

[Quick Quiz 5.56: In Listing 5.18, why does line 39 resend the signal? W]

Lines 49-61 show balance_count (), which is similar to that of earlier
examples.

Listing 5.18: Signal-Theft Limit Counter Value-Migration Functions

1 static void globalize_count(void)

2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;
6 countermax = 0;

7

8

}

9 static void flush_local_count_sig(int unused)

0 {

1 if (READ_ONCE(theft) != THEFT_REQ)

12 return;

13 WRITE_ONCE(theft, THEFT_ACK);

14 if (!counting)

15 smp_store_release(&theft, THEFT_READY);
16}

17

18 static void flush_local_count(void)

19 {

20 int t;

21 thread_id_t tid;

22

23 for_each_tid(t, tid) {

24 if (theftp[t] != NULL) {

25 if (*countermaxp[t] == 0) {

26 WRITE_ONCE(xtheftp[t], THEFT_READY);
27 continue;

28 ¥

29 WRITE_ONCE(*theftp[t], THEFT_REQ);
30 pthread_kill(tid, SIGUSR1);

31 }

32 ¥

33 for_each_tid(t, tid) {

34 if (theftp[t] == NULL)

35 continue;

36 while (smp_load_acquire(theftp[t]) != THEFT_READY) {
37 poll(NULL, 0, 1);

38 if (READ_ONCE(*theftp[t]) == THEFT_REQ)
39 pthread_kill(tid, SIGUSR1);
40

41 globalcount += *counterp[t];

12 *counterp[t] = 0;

43 globalreserve -= *countermaxp[t];

44 *countermaxp[t] = 0;

45 smp_store_release(theftp[t], THEFT_IDLE);
46 }

47 }

49 static void balance_count(void)

51 countermax = globalcountmax - globalcount -
52 globalreserve;

53 countermax /= num_online_threads();

54 if (countermax > MAX_COUNTERMAX)

55 countermax = MAX_COUNTERMAX;

56 globalreserve += countermax;

57 counter = countermax / 2;

58 if (counter > globalcount)

59 counter = globalcount;

60 globalcount -= counter;

Listing 5.19: Signal-Theft Limit Counter Add Function

1 i
2 {
3
4
5
6
7
8
9

11

nt add_count(unsigned long delta)

int fastpath = 0;

WRITE_ONCE(counting, 1);

barrier();

if (smp_load_acquire(&theft) <= THEFT_REQ &&

countermax - counter >= delta) {

WRITE_ONCE(counter, counter + delta);
fastpath = 1;

}

barrier();

WRITE_ONCE(counting, 0);

barrier();

if (READ_ONCE(theft) == THEFT_ACK)
smp_store_release(&theft, THEFT_READY);

if (fastpath)
return 1;

spin_lock(&gblecnt_mutex) ;

globalize_count();

if (globalcountmax - globalcount -

globalreserve < delta) {
flush_local_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;

}

}

globalcount += delta;

balance_count();

spin_unlock(&gblcnt_mutex) ;

return 1;

159

Listing 5.20: Signal-Theft Limit Counter Subtract Function

1 i
2 {
3
4
5
6
7
8
9

10
11
12
13

nt sub_count(unsigned long delta)

int fastpath = O;

WRITE_ONCE(counting, 1);

barrier();

if (smp_load_acquire(&theft) <= THEFT_REQ &&

counter >= delta) {

WRITE_ONCE(counter, counter - delta);
fastpath = 1;

¥

barrier();

WRITE_ONCE(counting, 0);

barrier();

if (READ_ONCE(theft) == THEFT_ACK)
smp_store_release(&theft, THEFT_READY);

if (fastpath)
return 1;

spin_lock(&gblcnt_mutex);

globalize_count();

if (globalcount < delta) {
flush_local_count();
if (globalcount < delta) {

spin_unlock(&gblcnt_mutex) ;
return 0;

¥

¥

globalcount -= delta;

balance_count();

spin_unlock(&gblcnt_mutex) ;

return 1;

160

Listing 5.21: Signal-Theft Limit Counter Read Function

| unsigned long read_count(void)

2 {

3 int t;

4 unsigned long sum;

5

6 spin_lock(&gblcnt_mutex);

7 sum = globalcount;

3 for_each_thread(t) {

9 if (counterp[t] !'= NULL)
10 sum += READ_ONCE (*counterp[t]);
11 ¥

12 spin_unlock(&gblcnt_mutex) ;

13 return sum;

14 ¥

Listing 5.19 shows the add_count () function. The fastpath spans
lines 5-18, and the slowpath lines 19-33. Line 5 sets the per-thread
counting variable to 1 so that any subsequent signal handlers interrupting
this thread will set the theft state to ACK rather than READY, allowing this
fastpath to complete properly. Line 6 prevents the compiler from reordering
any of the fastpath body to precede the setting of counting. Lines 7 and 8
check to see if the per-thread data can accommodate the add_count () and
if there is no ongoing theft in progress, and if so line 9 does the fastpath
addition and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath
body to follow line 13, which permits any subsequent signal handlers to
undertake theft. Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the theft state-change to
READY, and, if so, line 16 uses smp_store_release() to set the theft
state to READY, further ensuring that any CPU that sees the READY state
also sees the effects of line 9. If the fastpath addition at line 9 was executed,
then line 18 returns success.

Otherwise, we fall through to the slowpath starting at line 19. The
structure of the slowpath is similar to those of earlier examples, so its
analysis is left as an exercise to the reader. Similarly, the structure of
sub_count () on Listing 5.20 is the same as that of add_count (), so the
analysis of sub_count () is also left as an exercise for the reader, as is the
analysis of read_count () in Listing 5.21.

161

Listing 5.22: Signal-Theft Limit Counter Initialization Functions

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

void count_init(void)

{

}

struct sigaction sa;

sa.sa_handler = flush_local_count_sig;
sigemptyset(&sa.sa_mask) ;
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL) != 0) {
perror("sigaction");
exit (EXIT_FAILURE);

void count_register_thread(void)

{

}

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
counterp[idx] = &counter;
countermaxp[idx] = &countermax;
theftp[idx] = &theft;
spin_unlock(&gblcnt_mutex) ;

void count_unregister_thread(int nthreadsexpected)

{

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex) ;
globalize_count();
counterp[idx] = NULL;
countermaxp[idx] = NULL;
theftp[idx] = NULL;
spin_unlock(&gblcnt_mutex) ;

162

Lines 1-12 of Listing 5.22 show count_init (), which set up flush_
local_count_sig() as the signal handler for SIGUSR1, enabling the
pthread_kill() calls in flush_local_count() to invoke flush_
local_count_sig(). The code for thread registry and unregistry is
similar to that of earlier examples, so its analysis is left as an exercise for
the reader.

5.4.5 Signal-Theft Limit Counter Discussion

The signal-theft implementation runs more than eight times as fast as the
atomic implementation on my six-core x86 laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-
4 systems, given their slow atomic instructions, but the old 80386-based
Sequent Symmetry systems would do much better with the shorter path
length of the atomic implementation. However, this increased update-side
performance comes at the prices of higher read-side overhead: Those POSIX
signals are not free. If ultimate performance is of the essence, you will need
to measure them both on the system that your application is to be deployed
on.

Quick Quiz 5.57: Not only are POSIX signals slow, sending one to each thread
simply does not scale. What would you do if you had (say) 10,000 threads and
needed the read side to be fast? W

This is but one reason why high-quality APIs are so important: They
permit implementations to be changed as required by ever-changing hardware
performance characteristics.

Quick Quiz 5.58: What if you want an exact limit counter to be exact only for its
lower limit, but to allow the upper limit to be inexact? W

5.4.6 Applying Exact Limit Counters

Although the exact limit counter implementations presented in this section
can be very useful, they are not much help if the counter’s value remains
near zero at all times, as it might when counting the number of outstanding
accesses to an I/O device. The high overhead of such near-zero counting is

163

especially painful given that we normally don’t care how many references
there are. As noted in the removable I/O device access-count problem posed
by Quick Quiz 5.5, the number of accesses is irrelevant except in those rare
cases when someone is actually trying to remove the device.

One simple solution to this problem is to add a large “bias” (for example,
one billion) to the counter in order to ensure that the value is far enough
from zero that the counter can operate efficiently. When someone wants to
remove the device, this bias is subtracted from the counter value. Counting
the last few accesses will be quite inefficient, but the important point is that
the many prior accesses will have been counted at full speed.

Quick Quiz 5.59: What else had you better have done when using a biased
counter? W

Although a biased counter can be quite helpful and useful, it is only a
partial solution to the removable I/O device access-count problem called out
on page 117. When attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need to prevent any
future accesses from starting. One way to accomplish this is to read-acquire
a reader-writer lock when updating the counter, and to write-acquire that
same reader-writer lock when checking the counter. Code for doing I/0
might be as follows:

1 | read_lock(&mylock) ;

2| if (removing) {

3 read_unlock(&mylock) ;
4 cancel_io();

51} else {

6 add_count (1) ;

7 read_unlock(&mylock) ;
8 do_io();

9 sub_count (1) ;

10|}

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2
checks to see if the device is being removed, and, if so, line 3 releases the
lock and line 4 cancels the I/O, or takes whatever action is appropriate given
that the device is to be removed. Otherwise, line 6 increments the access
count, line 7 releases the lock, line 8 performs the I/O, and line 9 decrements
the access count.

164

Quick Quiz 5.60: This is ridiculous! We are read-acquiring a reader-writer lock
to update the counter? What are you playing at??? Wl

The code to remove the device might be as follows:

write_lock(&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock(&mylock) ;

while (read_count() != 0)
poll(NULL, 0, 1);

remove_device();

R Y N

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that
the device is being removed, and the loop spanning lines 5—6 waits for any
I/0O operations to complete. Finally, line 7 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.61: What other issues would need to be accounted for in a real
system? H

5.5 Parallel Counting Discussion

This idea that there is generality in the specific is of
far-reaching importance.

DoucLAs R. HOFSTADTER

This chapter has presented the reliability, performance, and scalability
problems with traditional counting primitives. The C-language ++ operator
is not guaranteed to function reliably in multithreaded code, and atomic
operations to a single variable neither perform nor scale well. This chapter
therefore presented a number of counting algorithms that perform and scale
extremely well in certain special cases.

It is well worth reviewing the lessons from these counting algorithms.
To that end, Section 5.5.1 overviews requisite validation, Section 5.5.2
summarizes performance and scalability, Section 5.5.3 discusses the need

165

Table 5.1: Statistical/Limit Counter Performance on x86

. < Reads (ns)
Algorithm g Updates
(count_*.c) Section & (ns) 1CPU 8CPUs 64CPUs 420 CPUs

stat 522 6.3 294 303 315 612
stat_eventual 5.2.4 6.4 1 1 1 1
end 523 2.9 301 6,309 147,594 239,683
end_rcu 13.5.1 2.9 454 481 508 2,317
lim 532 N 3.2 435 6,678 156,175 239,422
lim_app 534 N 2.4 485 7,041 173,108 239,682
lim_atomic 541 Y 19.7 513 7,085 199,957 239,450
lim_sig 544 Y 4.7 519 6,805 120,000 238,811

for specialization, and finally, Section 5.5.4 enumerates lessons learned and
calls attention to later chapters that will expand on these lessons.

5.5.1 Parallel Counting Validation

Many of the algorithms in this section are quite simple, so much so that it
is tempting to declare them to be correct by construction or by inspection.
Unfortunately, it is all too easy for those carrying out the construction
or the inspection to become overconfident, tired, confused, or just plain
sloppy, all of which can result in bugs. And early implementations of
these limit counters have in fact contained bugs, in some cases aided and
abetted by the complexities inherent in maintaining a 64-bit count on a
32-bit system. Therefore, validation is not optional, even for the simple
algorithms presented in this chapter.

The statistical counters are tested for acting like counters
(“counttorture.h”), thatis, that the aggregate sum in the counter changes
by the sum of the amounts added by the various update-side threads.

The limit counters are also tested for acting like counters (“limtorture.
h”), and additionally checked for their ability to accommodate the specified
limit.

Both of these test suites produce performance data that is used in
Section 5.5.2.

166

Although this level of validation is good and sufficient for textbook
implementations such as these, it would be wise to apply additional validation
before putting similar algorithms into production. Chapter 11 describes
additional approaches to testing, and given the simplicity of most of these
counting algorithms, most of the techniques described in Chapter 12 can
also be quite helpful.

5.5.2 Parallel Counting Performance

The top half of Table 5.1 shows the performance of the four parallel
statistical counting algorithms. All four algorithms provide near-perfect
linear scalability for updates. The per-thread-variable implementation
(count_end.c) is significantly faster on updates than the array-based
implementation (count_stat. c), but is slower at reads on large numbers
of core, and suffers severe lock contention when there are many parallel
readers. This contention can be addressed using the deferred-processing
techniques introduced in Chapter 9, as shown on the count_end_rcu.c
row of Table 5.1. Deferred processing also shines on the count_stat_
eventual . c row, courtesy of eventual consistency.

Quick Quiz 5.62: On the count_stat.c row of Table 5.1, we see that the
read-side scales linearly with the number of threads. How is that possible given
that the more threads there are, the more per-thread counters must be summed up?

Quick Quiz 5.63: Even on the fourth row of Table 5.1, the read-side performance
of these statistical counter implementations is pretty horrible. So why bother with
them? M

The bottom half of Table 5.1 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits incurs a substantial
update-side performance penalty, although on this x86 system that penalty
can be reduced by substituting signals for atomic operations. All of
these implementations suffer from read-side lock contention in the face of
concurrent readers.

Quick Quiz 5.64: Given the performance data shown in the bottom half of
Table 5.1, we should always prefer signals over atomic operations, right?

167

Quick Quiz 5.65: Can advanced techniques be applied to address the lock
contention for readers seen in the bottom half of Table 5.17 Wl

In short, this chapter has demonstrated a number of counting algorithms
that perform and scale extremely well in a number of special cases. But
must our parallel counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently in all cases? The
next section looks at these questions.

5.5.3 Parallel Counting Specializations

The fact that these algorithms only work well in their respective special cases
might be considered a major problem with parallel programming in general.
After all, the C-language ++ operator works just fine in single-threaded code,
and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence
misguided. The problem is not parallelism as such, but rather scalability. To
understand this, first consider the C-language ++ operator. The fact is that
it does not work in general, only for a restricted range of numbers. If you
need to deal with 1,000-digit decimal numbers, the C-language ++ operator
will not work for you.

Quick Quiz 5.66: The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading??? H

This problem is not specific to arithmetic. Suppose you need to store and
query data. Should you use an ASCII file? XML? A relational database? A
linked list? A dense array? A B-tree? A radix tree? Or one of the plethora
of other data structures and environments that permit data to be stored and
queried? It depends on what you need to do, how fast you need it done, and
how large your data set is—even on sequential systems.

Similarly, if you need to count, your solution will depend on how large of
numbers you need to work with, how many CPUs need to be manipulating
a given number concurrently, how the number is to be used, and what level
of performance and scalability you will need.

Nor is this problem specific to software. The design for a bridge
meant to allow people to walk across a small brook might be a simple as a

168

single wooden plank. But you would probably not use a plank to span the
kilometers-wide mouth of the Columbia River, nor would such a design
be advisable for bridges carrying concrete trucks. In short, just as bridge
design must change with increasing span and load, so must software design
change as the number of CPUs increases. That said, it would be good to
automate this process, so that the software adapts to changes in hardware
configuration and in workload. There has in fact been some research into
this sort of automation [AHS*03, SAH"03], and the Linux kernel does some
boot-time reconfiguration, including limited binary rewriting. This sort of
adaptation will become increasingly important as the number of CPUs on
mainstream systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics constrain parallel
software just as surely as they constrain mechanical artifacts such as bridges.
These constraints force specialization, though in the case of software it
might be possible to automate the choice of specialization to fit the hardware
and workload in question.

Of course, even generalized counting is quite specialized. We need to
do a great number of other things with computers. The next section relates
what we have learned from counters to topics taken up later in this book.

5.5.4 Parallel Counting Lessons

The opening paragraph of this chapter promised that our study of counting
would provide an excellent introduction to parallel programming. This
section makes explicit connections between the lessons from this chapter
and the material presented in a number of later chapters.

The examples in this chapter have shown that an important scalability and
performance tool is partitioning. The counters might be fully partitioned,
as in the statistical counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and 5.4. Partitioning will
be considered in far greater depth in Chapter 6, and partial parallelization in
particular in Section 6.4, where it is called parallel fastpath.

Quick Quiz 5.67: But if we are going to have to partition everything, why
bother with shared-memory multithreading? Why not just partition the problem
completely and run as multiple processes, each in its own address space? H

169

The partially partitioned counting algorithms used locking to guard
the global data, and locking is the subject of Chapter 7. In contrast, the
partitioned data tended to be fully under the control of the corresponding
thread, so that no synchronization whatsoever was required. This data
ownership will be introduced in Section 6.3.4 and discussed in more detail
in Chapter 8.

Because integer addition and subtraction are extremely cheap compared
to typical synchronization operations, achieving reasonable scalability
requires synchronization operations be used sparingly. One way of achieving
this is to batch the addition and subtraction operations, so that a great many
of these cheap operations are handled by a single synchronization operation.
Batching optimizations of one sort or another are used by each of the
counting algorithms listed in Table 5.1.

Finally, the eventually consistent statistical counter discussed in Sec-
tion 5.2.4 showed how deferring activity (in that case, updating the global
counter) can provide substantial performance and scalability benefits. This
approach allows common case code to use much cheaper synchronization
operations than would otherwise be possible. Chapter 9 will examine a
number of additional ways that deferral can improve performance, scalability,
and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only to common code
paths, works almost as well.

3. Partial partitioning can be applied to code (as in Section 5.2 statistical
counters’ partitioned updates and non-partitioned reads), but also
across time (as in Section 5.3’s and Section 5.4’s limit counters
running fast when far from the limit, but slowly when close to the
limit).

4. Partitioning across time often batches updates locally in order to
reduce the number of expensive global operations, thereby decreas-
ing synchronization overhead, in turn improving performance and

170

/

Weaken Partition

AN J

Figure 5.8: Optimization and the Four Parallel-Programming Tasks

scalability. All the algorithms shown in Table 5.1 make heavy use of
batching.

5. Read-only code paths should remain read-only: Spurious synchro-
nization writes to shared memory kill performance and scalability, as
seen in the count_end. c row of Table 5.1.

6. Judicious use of delay promotes performance and scalability, as seen
in Section 5.2.4.

7. Parallel performance and scalability is usually a balancing act: Beyond
a certain point, optimizing some code paths will degrade others. The
count_stat.c and count_end_rcu.c rows of Table 5.1 illustrate
this point.

8. Different levels of performance and scalability will affect algorithm
and data-structure design, as do a large number of other factors.
Figure 5.1 illustrates this point: Atomic increment might be completely
acceptable for a two-CPU system, but nevertheless be completely
inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” methods of increasing
performance and scalability, namely (1) partitioning over CPUs or threads,
v2025.12.18a

171

(2) batching so that more work can be done by each expensive synchro-
nization operation, and (3) weakening synchronization operations where
feasible. As a rough rule of thumb, you should apply these methods in
this order, as was noted earlier in the discussion of Figure 2.7 on page 34.
The partitioning optimization applies to the “Resource Partitioning and
Replication” bubble, the batching optimization to the “Work Partitioning”
bubble, and the weakening optimization to the “Parallel Access Control”
bubble, as shown in Figure 5.8. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-programmable gate
arrays (FPGAs), or general-purpose graphical processing units (GPGPUs),
you may need to pay close attention to the “Interacting With Hardware”
bubble throughout the design process. For example, the structure of a
GPGPU’s hardware threads and memory connectivity might richly reward
very careful partitioning and batching design decisions.

In short, as noted at the beginning of this chapter, the simplicity of
counting have allowed us to explore many fundamental concurrency issues
without the distraction of complex synchronization primitives or elaborate
data structures. Such synchronization primitives and data structures are
covered in later chapters.

172

Chapter 6
Partitioning and Synchronization Design

Divide and rule.

PHiLip [oF MACEDON

This chapter describes how to design software to take advantage of modern
commodity multicore systems by using idioms, or “design patterns” [Ale79,
GHJV95, SSRBO00], to balance performance, scalability, and response
time. Correctly partitioned problems lead to simple, scalable, and high-
performance solutions, while poorly partitioned problems result in slow and
complex solutions. This chapter will help you design partitioning into your
code, with some discussion of batching and weakening as well. The word
“design” is very important: You should partition first, batch second, weaken
third, and code fourth. Changing this order often leads to poor performance
and scalability along with great frustration.'
This chapter will also look at some specific problems, including:

1. Constraints on the classic Dining Philosophers problem requiring that
all the philophers be able to dine concurrently.

2. Lock-based double-ended queue implementations that provide concur-
rency between operations on both ends of a given queue when there
are many elements in the queue, but still work correctly when the
queue contains only a few elements. (Or, for that matter, no elements.)

3. Summarizing the rough quality of a concurrent algorithm with only a
few numbers.

4. Selecting the right granularity of partitioning.

! That other great dodge around the Laws of Physics, read-only replication, is covered in
Chapter 9.

5. Concurrent designs for applications that do not fully partition.

6. Obtaining more than 2x speedup from two CPUs.

To this end, Section 6.1 presents partitioning exercises, Section 6.2
reviews partitionability design criteria, Section 6.3 discusses synchronization
granularity selection, Section 6.4 overviews important parallel-fastpath
design patterns that provide speed and scalability on common-case fastpaths
while using simpler less-scalable “slow path” fallbacks for unusual situations,
and finally Section 6.5 takes a brief look beyond partitioning.

6.1 Partitioning Exercises

Whenever a theory appears to you as the only
possible one, take this as a sign that you have
neither understood the theory nor the problem
which it was intended to solve.

KARL POPPER

Although partitioning is more widely understood than it was in the early
2000s, its value is still underappreciated. Section 6.1.1 therefore takes
more highly parallel look at the classic Dining Philosophers problem and
Section 6.1.2 revisits the double-ended queue.

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philosophers prob-
lem [Dij71]. This problem features five philosophers who do nothing but
think and eat a “very difficult kind of spaghetti” which requires two forks to
eat. A given philosopher is permitted to use only the forks to his or her
immediate right and left, but will not put a given fork down until sated.
The object is to construct an algorithm that, quite literally, prevents
starvation. One starvation scenario would be if all of the philosophers

2 But feel free to instead think in terms of chopsticks.

174

Figure 6.1: Dining Philosophers Problem

Figure 6.2: Partial Starvation Is Also Bad

v2025.12.18a

Figure 6.3: Dining Philosophers Problem, Textbook Solution

picked up their leftmost forks simultaneously. Because none of them will
put down their fork until after they finished eating, and because none of
them may pick up their second fork until at least one of them has finished
eating, they all starve. Please note that it is not sufficient to allow at least
one philosopher to eat. As Figure 6.2 shows, starvation of even a few of the
philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which works fine assuming
negligible communications delays, an assumption that became invalid in
the late 1980s or early 1990s.> More recent solutions number the forks as
shown in Figure 6.3. Each philosopher picks up the lowest-numbered fork
next to his or her plate, then picks up the other fork. The philosopher sitting
in the uppermost position in the diagram thus picks up the leftmost fork
first, then the rightmost fork, while the rest of the philosophers instead pick
up their rightmost fork first. Because two of the philosophers will attempt

3 Tt s all too easy to denigrate Dijkstra from the viewpoint of the year 2021, more than
50 years after the fact. If you still feel the need to denigrate Dijkstra, my advice is to publish
something, wait 50 years, and then see how well your ideas stood the test of time.

176

to pick up fork 1 first, and because only one of those two philosophers will
succeed, there will be five forks available to four philosophers. At least one
of these four will have two forks, and will thus be able to eat.

This general technique of numbering resources and acquiring them
in numerical order is heavily used as a deadlock-prevention technique.
However, it is easy to imagine a sequence of events that will result in only
one philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.
3. P4 picks up fork 3.
4. PS5 picks up fork 4.

b

P5 picks up fork 5 and eats.
6. PS5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philosopher eating at a
given time, even when all five philosophers are hungry, despite the fact that
there are more than enough forks for two philosophers to eat concurrently.
It should be possible to do better than this!

One approach is shown in Figure 6.4, which includes four philosophers
rather than five to better illustrate the partition technique. Here the upper
and rightmost philosophers share a pair of forks, while the lower and
leftmost philosophers share another pair of forks. If all philosophers are
simultaneously hungry, at least two will always be able to eat concurrently.
In addition, as shown in the figure, the forks can now be bundled so that the
pair are picked up and put down simultaneously, simplifying the acquisition
and release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining Philosophers Problem?
|

177

Figure 6.4: Dining Philosophers Problem, Partitioned

Quick Quiz 6.2: How would you valididate an algorithm alleged to solve the
Dining Philosophers Problem? W

This is an example of “horizontal parallelism” [Inm85] or “data par-
allelism”, so named because there is no dependency among the pairs of
philosophers. In a horizontally parallel data-processing system, a given
item of data would be processed by only one of a replicated set of software
components.

Quick Quiz 6.3: And in just what sense can this “horizontal parallelism” be said
to be “horizontal”? M

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a list of elements that
may be inserted or removed from either end [Knu73]. It has been claimed that
a lock-based implementation permitting concurrent operations on both ends

178

of the double-ended queue is difficult [GroO7]. This section shows how a
partitioning design strategy can result in a reasonably simple implementation,
looking at three general approaches in the following sections. But first, how
should we validate a concurrent double-ended queue?

6.1.2.1 Double-Ended Queue Validation

A good place to start is with invariants. For example, if elements are pushed
onto one end of a double-ended queue and popped off of the other, the order
of those elements must be preserved. Similarly, if elements are pushed onto
one end of the queue and popped off of that same end, the order of those
elements must be reversed. Any element popped from the queue must have
been most recently pushed onto that queue, and if the queue is emptied, all
elements pushed onto it must have already been popped from it.

The beginnings of a test suite for concurrent double-ended queues
(“deqtorture.h”) provides the following checks:

1. Element-ordering checks provided by CHECK_SEQUENCE_PAIR().

2. Checks that elements popped were most recently pushed, provided by
melee().

3. Checks that elements pushed are popped before the queue is emptied,
also provided by melee ().

This suite includes both sequential and concurrent tests. Although this
suite is good and sufficient for textbook code, you should test considerably
more thoroughly for code intended for production use. Chapters 11 and 12
cover a large array of validation tools and techniques.

But with a prototype test suite in place, we are ready to look at the
double-ended-queue algorithms in the next sections.

6.1.2.2 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use a doubly linked list
with a left-hand lock for left-hand-end enqueue and dequeue operations along
with a right-hand lock for right-hand-end operations, as shown in Figure 6.5.

Lock L Lock R

Header L Header R

Lock L Lock R

HeaderL [S = : = = HeaderR

Lock L Lock R

Header L n-- Header R

Lock L Lock R

Header L n - Header R

Lock L Lock R

Header L u Header R

Figure 6.5: Double-Ended Queue With Left- and Right-Hand Locks

However, the problem with this approach is that the two locks’ domains must
overlap when there are fewer than four elements on the list. This overlap is
due to the fact that removing any given element affects not only that element,
but also its left- and right-hand neighbors. These domains are indicated by
color in the figure, with blue with downward stripes indicating the domain
of the left-hand lock, red with upward stripes indicating the domain of the
right-hand lock, and purple (with no stripes) indicating overlapping domains.
Although it is possible to create an algorithm that works this way, perhaps
using a dummy element similar to the two-lock queue presented by Michael
and Scott [MS96], the fact that it has no fewer than five special cases should
raise a big red flag, especially given that concurrent activity at the other end
of the list can shift the queue from one special case to another at any time.
It is far better to consider other designs.

Lock L Lock R

Figure 6.6: Compound Double-Ended Queue

6.1.2.3 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 6.6.
Two separate double-ended queues are run in tandem, each protected by its
own lock. This means that elements must occasionally be shuttled from one
of the double-ended queues to the other, in which case both locks must be
held. A simple lock hierarchy may be used to avoid deadlock, for example,
always acquiring the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to the same double-ended
queue, as we can unconditionally left-enqueue elements to the left-hand
queue and right-enqueue elements to the right-hand queue. The main
complication arises when dequeuing from an empty queue, in which case it
is necessary to:

1. If holding the right-hand lock, release it and acquire the left-hand
lock.

2. Acquire the right-hand lock.
3. Rebalance the elements across the two queues.
4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.4: In this compound double-ended queue implementation, what
should be done if the queue has become non-empty while releasing and reacquiring
the lock? H

The resulting code (locktdeq. c) is quite straightforward. The rebal-
ancing operation might well shuttle a given element back and forth between
the two queues, wasting time and possibly requiring workload-dependent

181

DEQ 0 DEQ2 | DEQ3

Lock O Lock2 | Lock 3

Index L Index R

Lock L Lock R

Figure 6.7: Hashed Double-Ended Queue

heuristics to obtain optimal performance. Although this might well be the
best approach in some cases, it is interesting to try for an algorithm with
greater determinism.

6.1.2.4 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a
data structure is to hash it. It is possible to trivially hash a double-ended
queue by assigning each element a sequence number based on its position
in the list, so that the first element left-enqueued into an empty queue is
numbered zero and the first element right-enqueued into an empty queue is
numbered one. A series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -3, ...), while a
series of elements right-enqueued into an otherwise-idle queue would be
assigned increasing numbers (2, 3, 4, ...). A key point is that it is not
necessary to actually represent a given element’s number, as this number
will be implied by its position in the queue.

Given this approach, we assign one lock to guard the left-hand index, one
to guard the right-hand index, and one lock for each hash chain. Figure 6.7
shows the resulting data structure given four hash chains. Note that the lock
domains do not overlap, and that deadlock is avoided by acquiring the index
locks before the chain locks, and by never acquiring more than one lock of a
given type (index or chain) at a time.

R1

Figure 6.8: Hashed Double-Ended Queue After Insertions

DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R
R4 R Ro R3
DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R
R4 Rs Ro R3
Lo R L_o L_4
DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R

182

Re | Rs | Rs | Ry

Lo R1 Ra2 Rs

La| L | Lo| Ly

Lg| Lo| Lg| Ls

Figure 6.9: Hashed Double-Ended Queue With 16 Elements

Each hash chain is itself a double-ended queue, and in this example,
each holds every fourth element. The uppermost portion of Figure 6.8
shows the state after a single element (“R;”) has been right-enqueued, with
the right-hand index having been incremented to reference hash chain 2.
The middle portion of this same figure shows the state after three more
elements have been right-enqueued. As you can see, the indexes are back
to their initial states (see Figure 6.7), however, each hash chain is now
non-empty. The lower portion of this figure shows the state after three
additional elements have been left-enqueued and an additional element has
been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue operation would
return element “L_,” and leave the left-hand index referencing hash chain 2,
which would then contain only a single element (“R,”). In this state, a
left-enqueue running concurrently with a right-enqueue would result in
lock contention, but the probability of such contention can be reduced to
arbitrarily low levels by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized in a four-hash-
bucket parallel double-ended queue. Each underlying single-lock double-
ended queue holds a one-quarter slice of the full parallel double-ended
queue.

Listing 6.1 shows the corresponding C-language data structure, assuming
an existing struct deq that provides a trivially locked double-ended-queue
implementation. This data structure contains the left-hand lock on line 2,
the left-hand index on line 3, the right-hand lock on line 4 (which is cache-
aligned in the actual implementation), the right-hand index on line 5, and,
finally, the hashed array of simple lock-based double-ended queues on line 6.

184

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data Structure
struct pdeq {

1

2 spinlock_t llock;

3 int lidx;

4 spinlock_t rlock;

5 int ridx;

6 struct deq bkt [PDEQ_N_BKTS];
7}

A high-performance implementation would of course use padding or special
alignment directives to avoid false sharing.

Listing 6.2 (lockhdeq.c) shows the implementation of the enqueue
and dequeue functions.* Discussion will focus on the left-hand operations,
as the right-hand operations are trivially derived from them.

Lines 1-13 show pdeq_pop_1(), which left-dequeues and returns an
element if possible, returning NULL otherwise. Line 6 acquires the left-hand
spinlock, and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be non-NULL, line 10
records the new left-hand index. Either way, line 11 releases the lock, and,
finally, line 12 returns the element if there was one, or NULL otherwise.

Lines 29-38 show pdeq_push_1(), which left-enqueues the specified
element. Line 33 acquires the left-hand lock, and line 34 picks up the
left-hand index. Line 35 left-enqueues the specified element onto the
double-ended queue indexed by the left-hand index. Line 36 then updates
the left-hand index and line 37 releases the lock.

As noted earlier, the right-hand operations are completely analogous to
their left-handed counterparts, so their analysis is left as an exercise for the
reader.

Quick Quiz 6.5: Is the hashed double-ended queue a good solution? Why or
why not?

4 One could easily create a polymorphic implementation in any number of languages, but
doing so is left as an exercise for the reader.

Listing 6.2: Lock-Based Parallel Double-Ended Queue Implementation

I struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {

3 struct cds_list_head *e;

4 int i;

5

6 spin_lock(&d->1lock);

7 i = moveright(d->1idx);

8 e = deq_pop_1(&d->bkt[i]);
9 if (e !'= NULL)

10 d->1lidx = i;

11 spin_unlock(&d->1lock) ;

12 return e;

13}

14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {

17 struct cds_list_head *e;
18 int i;

19

20 spin_lock(&d->rlock) ;

21 i = moveleft(d->ridx);

2 e = deq_pop_r(&d->bkt[i]);
23 if (e != NULL)

24 d->ridx = i;

25 spin_unlock(&d->rlock) ;

26 return e;

27 }

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)

31 int i;

32

33 spin_lock(&d->1lock) ;

34 i = d->1lidx;

35 deq_push_1(e, &d->bkt[il);

36 d->1idx = moveleft(d->lidx);
37 spin_unlock(&d->1lock) ;

38)

39

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)

42 int i;

43

44 spin_lock(&d->rlock) ;

45 i = d->ridx;

46 deq_push_r(e, &d->bkt[il);

47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock) ;

186
6.1.2.5 Compound Double-Ended Queue Revisited
This section revisits the compound double-ended queue, using a trivial

rebalancing scheme that moves all the elements from the non-empty queue
to the now-empty queue.

Quick Quiz 6.6: Move all the elements to the queue that became empty? In what
possible universe is this brain-dead solution in any way optimal??? H

In contrast to the hashed implementation presented in the previous
section, the compound implementation will build on a sequential imple-
mentation of a double-ended queue that uses neither locks nor atomic
operations.

Listing 6.3 shows the implementation. Unlike the hashed implementa-
tion, this compound implementation is asymmetric, so that we must consider
the pdeq_pop_1() and pdeq_pop_r () implementations separately.

Quick Quiz 6.7: Why can’t the compound parallel double-ended queue imple-
mentation be symmetric? W

The pdeq_pop_1() implementation is shown on lines 1-16 of the figure.
Line 5 acquires the left-hand lock, which line 14 releases. Line 6 attempts to
left-dequeue an element from the left-hand underlying double-ended queue,
and, if successful, skips lines 8—13 to simply return this element. Otherwise,
line 8 acquires the right-hand lock, line 9 left-dequeues an element from
the right-hand queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes the right-hand
queue, and line 12 releases the right-hand lock. The element, if any, that
was dequeued on line 9 will be returned.

The pdeq_pop_r() implementation is shown on lines 18-38 of the
figure. As before, line 22 acquires the right-hand lock (and line 36 releases
it), and line 23 attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 25-35 to simply return this element.
However, if line 24 determines that there was no element to dequeue, line 25
releases the right-hand lock and lines 26-27 acquire both locks in the
proper order. Line 28 then attempts to right-dequeue an element from the
right-hand list again, and if line 29 determines that this second attempt has
failed, line 30 right-dequeues an element from the left-hand queue (if there

187

Listing 6.3: Compound Parallel Double-Ended Queue Implementation

| struct cds_list_head *pdeq_pop_l(struct pdeq *d)

2 {

3 struct cds_list_head *e;

4

5 spin_lock(&d->1lock);

6 e = deq_pop_1(&d->1deq);

7 if (e == NULL) {

8 spin_lock(&d->rlock);

9 e = deq_pop_l(&d->rdeq);

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
I CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock) ;

13 }

14 spin_unlock(&d->1lock) ;

15 return e;

16 }

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {

20 struct cds_list_head *e;

21

22 spin_lock(&d->rlock);

23 e = deq_pop_r(&d->rdeq);

24 if (e == NULL) {

25 spin_unlock(&d->rlock) ;

2 spin_lock(&d->1lock) ;

27 spin_lock(&d->rlock) ;

28 e = deq_pop_r(&d->rdeq) ;

29 if (e == NULL) {

30 e = deq_pop_r(&d->1deq) ;

31 cds_list_splice(&d->1ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->1ldeq.chain);
33 }

34 spin_unlock(&d->1lock) ;

35 }

36 spin_unlock(&d->rlock) ;

37 return e;

38}

40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
4 {

Py spin_lock(&d->1lock);

43 deq_push_1(e, &d->1ldeq);
44 spin_unlock(&d->1lock) ;
45}

46
47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
a8 {

49 spin_lock(&d->rlock);
50 deq_push_r(e, &d->rdeq);
51 spin_unlock(&d->rlock) ;

188

is one available), line 31 moves any remaining elements from the left-hand
queue to the right-hand queue, and line 32 initializes the left-hand queue.
Either way, line 34 releases the left-hand lock.

Quick Quiz 6.8: Why is it necessary to retry the right-dequeue operation on
line 28 of Listing 6.3? W

Quick Quiz 6.9: Surely the left-hand lock must sometimes be available!!! So why
is it necessary that line 25 of Listing 6.3 unconditionally release the right-hand
lock? W

The pdeq_push_1() implementation is shown on lines 40-45 of List-
ing 6.3. Line 42 acquires the left-hand spinlock, line 43 left-enqueues the
element onto the left-hand queue, and finally line 44 releases the lock. The
pdeq_push_r () implementation (shown on lines 47-52) is quite similar.

Quick Quiz 6.10: But in the case where data is flowing in only one direction, the
algorithm shown in Listing 6.3 will have both ends attempting to acquire the same
lock whenever the consuming end empties its underlying double-ended queue.
Doesn’t that mean that sometimes this algorithm fails to provide concurrent access
to both ends of the queue even when the queue contains an arbitrarily large number
of elements? M

6.1.2.6 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed
variant presented in Section 6.1.2.4, but is still reasonably simple. Of course,
a more intelligent rebalancing scheme could be arbitrarily complex, but the
simple scheme shown here has been shown to perform well compared to
software alternatives [DCW*11] and even compared to algorithms using
hardware assist [DLM*10]. Nevertheless, the best we can hope for from
such a scheme is 2x scalability, as at most two threads can be holding the
dequeue’s locks concurrently. This limitation also applies to algorithms
based on non-blocking synchronization, such as the compare-and-swap-
based dequeue algorithm of Michael [Mic03].>

5 This paper is interesting in that it showed that special double-compare-and-swap (DCAS)
instructions are not needed for lock-free implementations of double-ended queues. Instead, the
common compare-and-swap (e.g., x86 cmpxchg) suffices.

189

Quick Quiz 6.11: Why are there not one but two solutions to the double-ended
queue problem? H

In fact, as noted by Dice et al. [DLM™*10], an unsynchronized single-
threaded double-ended queue significantly outperforms any of the parallel
implementations they studied. Therefore, the key point is that there can
be significant overhead enqueuing to or dequeuing from a shared queue,
regardless of implementation. This should come as no surprise in light of
the material in Chapter 3, given the strict first-in-first-out (FIFO) nature of
these queues.

Furthermore, these strict FIFO queues are strictly FIFO only with respect
to linearization points [HW901° that are not visible to the caller, in fact, in
these examples, the linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with respect to (say) the times
at which the individual operations started [HKLP12]. This indicates that
the strict FIFO property is not all that valuable in concurrent programs,
and in fact, Kirsch et al. present less-strict queues that provide improved
performance and scalability [KLP12].” All that said, if you are pushing all
the data used by your concurrent program through a single queue, you really
need to rethink your overall design.

6.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem given in the answer
to the Quick Quiz in Section 6.1.1 is an excellent example of “horizontal
parallelism” or “data parallelism”. The synchronization overhead in this
case is nearly (or even exactly) zero. In contrast, the double-ended queue
implementations are examples of “vertical parallelism” or “pipelining”,
given that data moves from one thread to another. The tighter coordination

6 In short, a linearization point is a single point within a given function where that function
can be said to have taken effect. In this lock-based implementation, the linearization points can
be said to be anywhere within the critical section that does the work.

7 Nir Shavit produced relaxed stacks for roughly the same reasons [Shall]. This situation
leads some to believe that the linearization points are useful to theorists rather than developers,
and leads others to wonder to what extent the designers of such data structures and algorithms
were considering the needs of their users.

190

required for pipelining in turn requires larger units of work to obtain a given
level of efficiency.

Quick Quiz 6.12: The tandem double-ended queue runs about twice as fast as
the hashed double-ended queue, even when I increase the size of the hash table to
an insanely large number. Why is that?

Quick Quiz 6.13: Is there a significantly better way of handling concurrency for
double-ended queues? M

These two examples show just how powerful partitioning can be in
devising parallel algorithms. Section 6.3.5 looks briefly at a third example,
matrix multiply. However, all three of these examples beg for more and
better design criteria for parallel programs, a topic taken up in the next
section.

6.2 Design Criteria

One pound of learning requires ten pounds of
commonsense to apply it.

PERSIAN PROVERB

One way to obtain the best performance and scalability is to simply hack
away until you converge on the best possible parallel program. Unfortunately,
if your program is other than microscopically tiny, the space of possible
parallel programs is so huge that convergence is not guaranteed in the
lifetime of the universe. Besides, what exactly is the “best possible parallel
program”? After all, Section 2.2 called out no fewer than three parallel-
programming goals of performance, productivity, and generality, and the
best possible performance will likely come at a cost in terms of productivity
and generality. We clearly need to be able to make higher-level choices at
design time in order to arrive at an acceptably good parallel program before
that program becomes obsolete.

However, more detailed design criteria are required to actually produce
areal-world design, a task taken up in this section. This being the real world,

191

these criteria often conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the “forces” acting on the
design, with particularly good tradeoffs between these forces being called
“design patterns” [Ale79, GHJV95].

The design criteria for attaining the three parallel-programming goals
are speedup, contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased performance is the major
reason to go to all of the time and trouble required to parallelize
it. Speedup is defined to be the ratio of the time required to run a
sequential version of the program to the time required to run a parallel
version.

Contention: If more CPUs are applied to a parallel program than can be
kept busy by that program, the excess CPUs are prevented from doing
useful work by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-
preemptible, and non-interruptible® version of a given parallel pro-
gram would not need any synchronization primitives. Therefore,
any time consumed by these primitives (including communication
cache misses as well as message latency, locking primitives, atomic
instructions, and memory barriers) is overhead that does not con-
tribute directly to the useful work that the program is intended to
accomplish. Note that the important measure is the relationship
between the synchronization overhead and the overhead of the code
in the critical section, with larger critical sections able to tolerate
greater synchronization overhead. The work-to-synchronization ratio
is related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may of-
ten be replicated rather than partitioned, and furthermore may be
protected with asymmetric synchronization primitives that reduce

8 Either by masking interrupts or by being oblivious to them.

192

readers’ synchronization overhead at the expense of that of writers,
thereby reducing overall synchronization overhead. Corresponding
optimizations are possible for frequently updated data structures, as
discussed in Chapter 5.

Complexity: A parallel program is more complex than an equivalent se-
quential program because the parallel program has a much larger state
space than does the sequential program, although large state spaces
having regular structures can in some cases be easily understood. A
parallel programmer must consider synchronization primitives, mes-
saging, locking design, critical-section identification, and deadlock in
the context of this larger state space.

This greater complexity often translates to higher development and
maintenance costs. Therefore, budgetary constraints can limit the
number and types of modifications made to an existing program, since
a given degree of speedup is worth only so much time and trouble.
Worse yet, added complexity can actually reduce performance and
scalability.

Therefore, beyond a certain point, there may be potential sequential
optimizations that are cheaper and more effective than parallelization.
As noted in Section 2.2.1, parallelization is but one performance
optimization of many, and is furthermore an optimization that applies
most readily to CPU-based bottlenecks.

These criteria will act together to enforce a maximum speedup. The first
three criteria are deeply interrelated, so the remainder of this section analyzes
these interrelationships.’

Note that these criteria may also appear as part of the requirements
specification, and further that they are one solution to the problem of
summarizing the quality of a concurrent algorithm from page 172. For
example, speedup may act as a relative desideratum (“the faster, the better”)
or as an absolute requirement of the workload (“the system must support

9 A real-world parallel system will be subject to many additional design criteria, such as
data-structure layout, memory size, memory-hierarchy latencies, bandwidth limitations, and
T/O issues.

193

at least 1,000,000 web hits per second”). Classic design pattern languages
describe relative desiderata as forces and absolute requirements as context.

An understanding of the relationships between these design criteria can
be very helpful when identifying appropriate design tradeoffs for a parallel
program.

1.

The less time a program spends in exclusive-lock critical sections,
the greater the potential speedup. This is a consequence of Amdahl’s
Law [Amd67] because only one CPU may execute within a given
exclusive-lock critical section at a given time.

More specifically, for unbounded linear scalability, the fraction of
time that the program spends in a given exclusive critical section must
decrease as the number of CPUs increases. For example, a program
will not scale to 10 CPUs unless it spends much less than one tenth
of its time in the most-restrictive exclusive-lock critical section.

Contention effects consume the excess CPU and/or wallclock time
when the actual speedup is less than the number of available CPUs.
The larger the gap between the number of CPUs and the actual
speedup, the less efficiently the CPUs will be used. Similarly, the
greater the desired efficiency, the smaller the achievable speedup.

If the available synchronization primitives have high overhead com-
pared to the critical sections that they guard, the best way to improve
speedup is to reduce the number of times that the primitives are
invoked. This can be accomplished by batching critical sections,
using data ownership (see Chapter 8), using asymmetric primitives
(see Chapter 9), or by using a coarse-grained design such as code
locking.

If the critical sections have high overhead compared to the primitives
guarding them, the best way to improve speedup is to increase paral-
lelism by moving to reader/writer locking, data locking, asymmetric,
or data ownership.

If the critical sections have high overhead compared to the primitives
guarding them and the data structure being guarded is read much

194
more often than modified, the best way to increase parallelism is to
move to reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for example, reducing
lock contention, also improve real-time latencies [McKO05c].

Quick Quiz 6.14: Don’t all these problems with critical sections mean that we
should just always use non-blocking synchronization [Her90], which don’t have
critical sections? H

It is worth reiterating that contention has many guises, including lock
contention, memory contention, cache overflow, thermal throttling, and
much else besides. This chapter looks primarily at lock and memory
contention.

6.3 Synchronization Granularity

Doing little things well is a step toward doing big
things better.

HARRY F. BANKS

Figure 6.10 gives a pictorial view of different levels of synchronization
granularity, each of which is described in one of the following sections.
These sections focus primarily on locking, but similar granularity issues
arise with all forms of synchronization.

6.3.1 Sequential Program

If the program runs fast enough on a single processor, and has no interactions
with other processes, threads, or interrupt handlers, you should remove the
synchronization primitives and spare yourself their overhead and complexity.
Some years back, there were those who would argue that Moore’s Law
would eventually force all programs into this category. However, as can be
seen in Figure 6.11, the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance will increasingly

195

SPSERTR
Sequential

Program |4
- @@

Partition Batch

S
> Code

Locking |
NS

Partition Batch

= Data
| Locking |
N
Own Disown
> Data

Ownership
-

Figure 6.10: Design Patterns and Lock Granularity

require parallelism.!? Given that back in 2006 Paul typed the first version
of this sentence on a dual-core laptop, and further given that many of the
graphs added in 2020 were generated on a system with 56 hardware threads
per socket, parallelism is well and truly here. It is also important to note that
Ethernet bandwidth is continuing to grow, as shown in Figure 6.12. This
growth will continue to motivate multithreaded servers in order to handle
the communications load.

Please note that this does not mean that you should code each and every
program in a multi-threaded manner. Again, if a program runs quickly
enough on a single processor, spare yourself the overhead and complexity
of SMP synchronization primitives. The simplicity of the hash-table lookup
code in Listing 6.4 underscores this point.'! A key point is that speedups
due to parallelism are normally limited to the number of CPUs. In contrast,

10" This plot shows clock frequencies for newer CPUs theoretically capable of retiring
one or more instructions per clock, and MIPS for older CPUs requiring multiple clocks to
execute even the simplest instruction. The reason for taking this approach is that the newer
CPUs’ ability to retire multiple instructions per clock is typically limited by memory-system
performance.

1 The examples in this section are taken from Hart et al. [HMBO6], adapted for clarity by
gathering related code from multiple files.

196

10000 1T T T T T T _3
%) i W:
o i]
S 1000 | *
7 E :
§ 100 f E
O o —+ 3
o C +%¥§]
~ 10 F + -
S : + E
o) i #+ +]
=) 1§—+ E
5 4 |

01 [T TR S N N B
28282882 %g
- ~ Y +~ N AN AN AN

Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel CPUs

6
1x10 T T T T T 1
o 100000 Ethernet
(&)
S 10000
£
S 1000
&
° 100 x86 CPUs
2
s 10
()
o
1 +
+
01 [R R O N N B
O 1 O 1 O 1 O U O u o
N N 0O O OO O © O ~ +~
D OO OO OO OO OO ©O O O O o
- - - - - -~ N N N N N
Year

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU Performance

197

Listing 6.4: Sequential-Program Hash Table Search

struct hash_table
{

1

2

3 long nbuckets;
4

5

struct node **buckets;
};
6
7 typedef struct node {

8 unsigned long key;
9 struct node *next;
10 } node_t;

11
12 int hash_search(struct hash_table *h, long key)

13 {

14 struct node *cur;

15

16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {

18 if (cur->key >= key) {

19 return (cur->key == key);
20 }

21 cur = cur->next;

2 }

23 return 0;

24 }

speedups due to sequential optimizations, for example, careful choice of
data structure, can be arbitrarily large.

[Quick Quiz 6.15: What should you do to validate a hash table? W]

On the other hand, if you are not in this happy situation, read on!

6.3.2 Code Locking

Code locking is quite simple due to the fact that it uses only global locks.'?
It is especially easy to retrofit an existing program to use code locking in
order to run it on a multiprocessor. If the program has only a single shared
resource, code locking will even give optimal performance. However, many
of the larger and more complex programs require much of the execution

12 ¢ your program instead has locks in data structures, or, in the case of Java, uses classes
with synchronized instances, you are instead using “data locking”, described in Section 6.3.3.

198

Listing 6.5: Code-Locking Hash Table Search

spinlock_t hash_lock;

1
2
3 struct hash_table
4 {

5 long nbuckets;

6 struct node **buckets;

7}

9 typedef struct node {

10 unsigned long key;
11 struct node *next;
12 } node_t;

14 int hash_search(struct hash_table *h, long key)

15 {

16 struct node *cur;

17 int retval;

18

19 spin_lock(&hash_lock);

20 cur = h->buckets[key % h->nbuckets];

21 while (cur !'= NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;

26 }

27 cur = cur->next;

28 ¥

29 spin_unlock(&hash_lock);

30 return O;

31}

to occur in critical sections, which in turn causes code locking to sharply
limits their scalability.

Therefore, you should use code locking on programs that spend only a
small fraction of their execution time in critical sections or from which only
modest scaling is required. In addition, programs that primarily use the
more scalable approaches described in later sections often use code locking
to handle rare error cases or significant state transitions. In these cases, code
locking will provide a relatively simple program that is very similar to its
sequential counterpart, as can be seen in Listing 6.5. However, note that the
simple return of the comparison in hash_search () in Listing 6.4 has now
become three statements due to the need to release the lock before returning.

199

Figure 6.13: Lock Contention

Note that the hash_lock acquisition and release statements on lines 19,
24, and 29 are mediating ownership of the hash table among the CPUs
wishing to concurrently access that hash table. Another way of looking
at this is that hash_lock is partitioning time, thus giving each requesting
CPU its own partition of time during which it owns this hash table. In
addition, in a well-designed algorithm, there should be ample partitions of
time during which no CPU owns this hash table.

[Quick Quiz 6.16: “Partitioning time”? Isn’t that an odd turn of phrase? WM]

Unfortunately, code locking is particularly prone to “lock contention”,
where multiple CPUs need to acquire the lock concurrently. SMP program-
mers who have taken care of groups of small children (or groups of older
people who are acting like children) will immediately recognize the danger
of having only one of something, as illustrated in Figure 6.13.

One solution to this problem, named “data locking”, is described in the
next section.

200

6.3.3 Data Locking

Many data structures may be partitioned, with each partition of the data
structure having its own lock. Then the critical sections for each part of
the data structure can execute in parallel, although only one instance of
the critical section for a given part could be executing at a given time.
You should use data locking when contention must be reduced, and where
synchronization overhead is not limiting speedups. Data locking reduces
contention by distributing the instances of the overly-large critical section
across multiple data structures, for example, maintaining per-hash-bucket
critical sections in a hash table, as shown in Listing 6.6. The increased
scalability again results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure 6.13, data
locking helps promote harmony, as illustrated by Figure 6.14—and in
parallel programs, this almost always translates into increased performance
and scalability. For this reason, data locking was heavily used by Sequent
in its kernels [BK85, Inm85, Gar90, Dov90, MD92, MG92, MS93].

Another way of looking at this is to think of each ->bucket_lock as
mediating ownership not of the entire hash table as was done for code locking,
but only for the bucket corresponding to that ->bucket_lock. Each lock
still partitions time, but the per-bucket-locking technique also partitions
the address space, so that the overall technique can be said to partition
spacetime. If the number of buckets is large enough, this partitioning of
space should with high probability permit a given CPU immediate access to
a given hash bucket.

However, as those who have taken care of small children can again attest,
even providing enough to go around is no guarantee of tranquillity. The
analogous situation can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called “dcache”). Each
entry in this cache has its own lock, but the entries corresponding to the root
directory and its direct descendants are much more likely to be traversed
than are more obscure entries. This can result in many CPUs contending
for the locks of these popular entries, resulting in a situation not unlike that
shown in Figure 6.15.

201

Listing 6.6: Data-Locking Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket **buckets;
5

};

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 unsigned long key;

14 struct node *next;

15 } node_t;

17 int hash_search(struct hash_table *h, long key)
18 {

19 struct bucket *bp;

20 struct node *cur;

21 int retval;

22

23 bp = h->buckets[key % h->nbuckets];

24 spin_lock(&bp->bucket_lock);

25 cur = bp->list_head;

26 while (cur != NULL) {

27 if (cur->key >= key) {

28 retval = (cur->key == key);
29 spin_unlock (&bp->bucket_lock) ;
30 return retval;

31 }

32 cur = cur->next;

33 ¥

34 spin_unlock (&bp->bucket_lock) ;

35 return O;

Figure 6.14: Data Locking

Figure 6.15: Data Locking and Skew

v2025.12.18a

202

203

In many cases, algorithms can be designed to reduce the instance of
data skew, and in some cases eliminate it entirely (for example, in the Linux
kernel’s dcache [MSS04, Cor10a, Brol5a, Bro15b, Brol5c]). Data locking
is often used for partitionable data structures such as hash tables, as well as
in situations where multiple entities are each represented by an instance of a
given data structure. The Linux-kernel task list is an example of the latter,
each task structure having its own alloc_lock and pi_lock.

A key challenge with data locking on dynamically allocated structures
is ensuring that the structure remains in existence while the lock is being
acquired [GKAS99]. The code in Listing 6.6 finesses this challenge by
placing the locks in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash table were resizeable,
so that the locks were now dynamically allocated. In this case, there would
need to be some means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 6.17: What are some ways of preventing a structure from being freed
while its lock is being acquired? W

6.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs,
so that each thread/CPU accesses its subset of the data structure without
any synchronization overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable to do so directly.
Instead, the first thread must communicate with the second thread, so that the
second thread performs the operation on behalf of the first, or, alternatively,
migrates the data to the first thread.
Data ownership might seem arcane, but it is used very frequently:

1. Any variables accessible by only one CPU or thread (such as auto
variables in C and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context.
It is very common for applications interacting with parallel database
engines to be written as if they were entirely sequential programs.

204

Such applications own the user interface and his current action.
Explicit parallelism is thus confined to the database engine itself.

3. Parametric simulations are often trivially parallelized by granting
each thread ownership of a particular region of the parameter space.
There are also computing frameworks designed for this type of
problem [UniO8a].

If there is significant sharing, communication between the threads or
CPUs can result in significant complexity and overhead. Furthermore, if
the most-heavily used data happens to be that owned by a single CPU, that
CPU will be a “hot spot”, sometimes with results resembling that shown
in Figure 6.15. However, in situations where no sharing is required, data
ownership achieves ideal performance, and with code that can be as simple
as the sequential-program case shown in Listing 6.4. Such situations are
often referred to as “embarrassingly parallel”, and, in the best case, resemble
the situation previously shown in Figure 6.14.

Another important instance of data ownership occurs when the data is
read-only, in which case, all threads can “own” it via replication.

Where data locking partitions both the address space (with one hash
buckets per partition) and time (using per-bucket locks), data ownership
partitions only the address space. The reason that data ownership need
not partition time is because a given thread or CPU is assigned permanent
ownership of a given address-space partition.

Quick Quiz 6.18: But won’t system boot and shutdown (or application startup
and shutdown) be partitioning time, even for data ownership? H

Data ownership will be presented in more detail in Chapter 8.

6.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathemat-
ical synchronization-efficiency viewpoint. Readers who are uninspired by
mathematics might choose to skip this section.

The approach is to use a crude queueing model for the efficiency
of synchronization mechanism that operate on a single shared global

205

variable, based on an M/M/1 queue. M/M/1 queuing models are based
on an exponentially distributed “inter-arrival rate” A and an exponentially
distributed “service rate” u. The inter-arrival rate A can be thought of as the
average number of synchronization operations per second that the system
would process if the synchronization were free, in other words, A is an
inverse measure of the overhead of each non-synchronization unit of work.
For example, if each unit of work was a transaction, and if each transaction
took one millisecond to process, excluding synchronization overhead, then
A would be 1,000 transactions per second.

The service rate u is defined similarly, but for the average number of
synchronization operations per second that the system would process if the
overhead of each transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization operations, in
other words, p can be roughly thought of as the synchronization overhead
in absence of contention. For example, suppose that each transaction’s
synchronization operation involves an atomic increment instruction, and
that a computer system is able to do a private-variable atomic increment
every 5 nanoseconds on each CPU (see Figure 5.1).!3 The value of y is
therefore about 200,000,000 atomic increments per second.

Of course, the value of A increases as increasing numbers of CPUs
increment a shared variable because each CPU is capable of processing
transactions independently (again, ignoring synchronization):

A=ndy 6.1)

Here, n is the number of CPUs and Ay is the transaction-processing
capability of a single CPU. Note that the expected time for a single CPU to
execute a single transaction in the absence of contention is 1/4y.

Because the CPUs have to “wait in line” behind each other to get their
chance to increment the single shared variable, we can use the M/M/1
queueing-model expression for the expected total waiting time:

13 of course, if there are 8§ CPUs all incrementing the same shared variable, then each
CPU must wait at least 35 nanoseconds for each of the other CPUs to do its increment before
consuming an additional 5 nanoseconds doing its own increment. In fact, the wait will be
longer due to the need to move the variable from one CPU to another.

206

T=—— 6.2
p 6.2)
Substituting the above value of A:
T= ! (6.3)
- ndg '

Now, the efficiency is just the ratio of the time required to process
a transaction in absence of synchronization (1/1g) to the time required
including synchronization (T + 1/1¢):

1/29
= — 6.4
¢ T+ 1//1() ()
Substituting the above value for T and simplifying:
M
/1—0 —-n
e=—""— 6.5)
1)

But the value of u/ A is just the ratio of the time required to process the
transaction (absent synchronization overhead) to that of the synchronization
overhead itself (absent contention). If we call this ratio f, we have:

f—n
e oo (6.6)

Figure 6.16 plots the synchronization efficiency e as a function of
the number of CPUs/threads n for a few values of the overhead ratio
f. For example, again using the 5-nanosecond atomic increment, the
f =10 line corresponds to each CPU attempting an atomic increment every
50 nanoseconds, and the f = 100 line corresponds to each CPU attempting
an atomic increment every 500 nanoseconds, which in turn corresponds
to some hundreds (perhaps thousands) of instructions. Given that each
trace drops off sharply with increasing numbers of CPUs or threads, we can
conclude that synchronization mechanisms based on atomic manipulation
of a single global shared variable will not scale well if used heavily on
current commodity hardware. This is an abstract mathematical depiction of

207

I
50
.

10! ? }

[i R I
cloololololoNole]
—TANMITOONOD

Synchronization Efficiency

100

Number of CPUs (Threads)

Figure 6.16: Synchronization Efficiency

the forces leading to the parallel counting algorithms that were discussed in
Chapter 5. Your real-world mileage may differ.

Nevertheless, the concept of efficiency is useful, and even in cases having
little or no formal synchronization. Consider for example a matrix multiply,
in which the columns of one matrix are multiplied (via “dot product”) by the
rows of another, resulting in an entry in a third matrix. Because none of these
operations conflict, it is possible to partition the columns of the first matrix
among a group of threads, with each thread computing the corresponding
columns of the result matrix. The threads can therefore operate entirely
independently, with no synchronization overhead whatsoever, as is done in
matmul . c. One might therefore expect a perfect efficiency of 1.0.

However, Figure 6.17 tells a different story, especially for a 64-by-64
matrix multiply, which never gets above an efficiency of about 0.3, even when
running single-threaded, and drops sharply as more threads are added.'*
The 128-by-128 matrix does better, but still fails to demonstrate much
performance increase with added threads. The 256-by-256 matrix does

14 In contrast to the smooth traces of Figure 6.16, the wide error bars and jagged traces of
Figure 6.17 gives evidence of its real-world nature.

208

1.2 ——rrrrr e ——r

Matrix Multiply Efficiency

Number of CPUs (Threads)
Figure 6.17: Matrix Multiply Efficiency

scale reasonably well, but only up to a handful of CPUs. The 512-by-512
matrix multiply’s efficiency is measurably less than 1.0 on as few as 10
threads, and even the 1024-by-1024 matrix multiply deviates noticeably
from perfection at a few tens of threads. Nevertheless, this figure clearly
demonstrates the performance and scalability benefits of batching: If you
must incur synchronization overhead, you may as well get your money’s
worth, which is the solution to the problem of deciding on granularity of
synchronization put forth on page 172.

Quick Quiz 6.19: How can a single-threaded 64-by-64 matrix multiple possibly
have an efficiency of less than 1.0? Shouldn’t all of the traces in Figure 6.17 have
efficiency of exactly 1.0 when running on one thread? H

Given these inefliciencies, it is worthwhile to look into more-scalable
approaches such as the data locking described in Section 6.3.3 or the
parallel-fastpath approach discussed in the next section.

Quick Quiz 6.20: How are data-parallel techniques going to help with matrix
multiply? It is already data parallel!!! H

209

Quick Quiz 6.21: What did you do to validate this matrix multiply algorithm?
|

6.4 Parallel Fastpath

There are two ways of meeting difficulties: You alter
the difficulties, or you alter yourself to meet them.

PHYLLIS BoTTOME

Fine-grained (and therefore usually higher-performance) designs are typi-
cally more complex than are coarser-grained designs. In many cases, most
of the overhead is incurred by a small fraction of the code [Knu73]. So why
not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively
parallelize the common-case code path without incurring the complexity
that would be required to aggressively parallelize the entire algorithm. You
must understand not only the specific algorithm you wish to parallelize, but
also the workload that the algorithm will be subjected to. Great creativity
and design effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one
elsewhere) and is therefore a template pattern. The following instances
of parallel fastpath occur often enough to warrant their own patterns, as
depicted in Figure 6.18:

1. Reader/Writer Locking (described below in Section 6.4.1).

2. Read-copy update (RCU), which may be used as a high-performance
replacement for reader/writer locking, is introduced in Section 9.5.
Other alternatives include hazard pointers (Section 9.3) and sequence
locking (Section 9.4). These alternatives will not be discussed further
in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched upon in Sec-
tion 6.4.2.

T T
Reader/Writer

Locking
N

Y
RCU

Parallel R
Fastpath

R

Hierarchical

Locking
N/

Y

Allocator

Caches
e

Figure 6.18: Parallel-Fastpath Design Patterns

4. Resource Allocator Caches ([McK96a, MS93]). See Section 6.4.3
for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if the program
uses coarse-grained parallelism with large critical sections), and if only a
small fraction of the critical sections modify data, then allowing multiple
readers to proceed in parallel can greatly increase scalability. Writers
exclude both readers and each other. There are many implementations of
reader-writer locking, including the POSIX implementation described in
Section 4.2.4. Listing 6.7 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking.
Snaman [ST87] describes a more ornate six-mode asymmetric locking
design used in several clustered systems. Locking in general and reader-
writer locking in particular is described extensively in Chapter 7.

Listing 6.7: Reader-Writer-Locking Hash Table Search

1
2
3
4
5

rwlock_t hash_lock;

struct hash_table

{

};

long nbuckets;
struct node **buckets;

typedef struct node {

unsigned long key;
struct node *next;

} node_t;

int hash_search(struct hash_table *h, long key)

{

}

struct node *cur;
int retval;

read_lock(&hash_lock);
cur = h->buckets[key % h->nbuckets];
while (cur != NULL) {
if (cur->key >= key) {
retval = (cur->key == key);
read_unlock(&hash_lock) ;
return retval;

}

cur = cur->next;
¥
read_unlock(&hash_lock) ;
return O;

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-grained lock that
is held only long enough to work out which fine-grained lock to acquire.
Listing 6.8 shows how our hash-table search might be adapted to do
hierarchical locking, but also shows the great weakness of this approach:
We have paid the overhead of acquiring a second lock, but we only hold it
for a short time. In this case, the data-locking approach would be simpler
and likely perform better.

[Quick Quiz 6.22: In what situation would hierarchical locking work well? H J

6.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel fixed-block-
size memory allocator. More detailed descriptions may be found in the
literature [MG92, MS93, BAO1, MSKO1, Evall, Ken20] or in the Linux
kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between
the need to provide extremely fast memory allocation and freeing in the
common case and the need to efficiently distribute memory in face of
unfavorable allocation and freeing patterns.

To see this tension, consider a straightforward application of data
ownership to this problem—simply carve up memory so that each CPU
owns its share. For example, suppose that a system with 12 CPUs has
64 gigabytes of memory, for example, the laptop [am using right now. We
could simply assign each CPU a five-gigabyte region of memory, and allow
each CPU to allocate from its own region, without the need for locking
and its complexities and overheads. Unfortunately, this scheme fails when
CPU 0 only allocates memory and CPU 1 only frees it, as happens in simple
producer-consumer workloads.

The other extreme, code locking, suffers from excessive lock contention
and overhead [MS93].

()
)

Listing 6.8: Hierarchical-Locking Hash Table Search
struct hash_table

1
2 {

3 long nbuckets;

4 struct bucket **buckets;
5}

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 spinlock_t node_lock;

14 unsigned long key;

15 struct node *next;

16 } node_t;

18 int hash_search(struct hash_table *h, long key)

19 {

20 struct bucket *bp;

21 struct node *cur;

22 int retval;

23

24 bp = h->buckets[key % h->nbuckets];

25 spin_lock(&bp->bucket_lock) ;

26 cur = bp->list_head;

27 while (cur != NULL) {

2 if (cur->key >= key) {

29 spin_lock(&cur->node_lock) ;
30 spin_unlock (&bp->bucket_lock) ;
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36 }

37 spin_unlock (&bp->bucket_lock) ;

38 return 0;

Global Pool

(Code Locked)

Overflow
Overflow

Allocate/Free

Figure 6.19: Allocator Cache Schematic

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning
a modest cache of blocks, and with a large code-locked shared pool for
additional blocks. To prevent any given CPU from monopolizing the
memory blocks, we place a limit on the number of blocks that can be in
each CPU’s cache. In a two-CPU system, the flow of memory blocks will
be as shown in Figure 6.19: When a given CPU is trying to free a block
when its pool is full, it sends blocks to the global pool, and, similarly, when
that CPU is trying to allocate a block when its pool is empty, it retrieves
blocks from the global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are
shown in Listing 6.9 (“smpalloc.c”). The “Global Pool” of Figure 6.19

Listing 6.9: Allocator-Cache Data Structures

1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3

4 struct globalmempool {

5 spinlock_t mutex;

6 int cur;
7
8

struct memblock *pool[GLOBAL_POOL_SIZE];

} globalmem;
9
10 struct perthreadmempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14
15 DEFINE_PER_THREAD (struct perthreadmempool, perthreadmem) ;

is implemented by globalmem of type struct globalmempool, and
the two CPU pools by the per-thread variable perthreadmem of type
struct perthreadmempool. Both of these data structures have arrays
of pointers to blocks in their pool fields, which are filled from index zero
upwards. Thus, if globalmem.pool[3] is NULL, then the remainder of
the array from index 4 up must also be NULL. The cur fields contain the
index of the highest-numbered full element of the pool array, or —1 if
all elements are empty. All elements from globalmem.pool [0] through
globalmem.pool [globalmem. cur] must be full, and all the rest must be
empty.15

The operation of the pool data structures is illustrated by Figure 6.20,
with the six boxes representing the array of pointers making up the pool
field, and the number preceding them representing the cur field. The shaded
boxes represent non-NULL pointers, while the empty boxes represent NULL
pointers. An important, though potentially confusing, invariant of this data
structure is that the cur field is always one smaller than the number of
non-NULL pointers.

15 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically
small, but this small size makes it easier to single-step the program in order to get a feel for its
operation.

216

(Empty) -1

0

I
= L[]
e []
gl O
e |
I
I

Figure 6.20: Allocator Pool Schematic

6.4.3.4 Allocation Function

The allocation function memblock_alloc () may be seen in Listing 6.10.
Line 7 picks up the current thread’s per-thread pool, and line 8 checks to
see if it is empty.

If so, lines 9—-16 attempt to refill it from the global pool under the
spinlock acquired on line 9 and released on line 16. Lines 10-14 move
blocks from the global to the per-thread pool until either the local pool
reaches its target size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty,
and if not, lines 19-21 remove a block and return it. Otherwise, line 23 tells
the sad tale of memory exhaustion.

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function. Line 6 gets a pointer to
this thread’s pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8—15 empty half of the per-thread pool into the global pool,
with lines 8 and 14 acquiring and releasing the spinlock. Lines 9-12

Listing 6.10: Allocator-Cache Allocator Function

1 struct memblock *memblock_alloc(void)

2 {

3 int i;

4 struct memblock *p;

5 struct perthreadmempool *pcpp;

6

7 pepp = &__get_thread_var (perthreadmem) ;

8 if (pcpp->cur < 0) {

9 spin_lock(&globalmem.mutex) ;

10 for (i = 0; i < TARGET_POOL_SIZE &&

11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool [globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }

15 pcpp—>cur = i - 1;

16 spin_unlock(&globalmem.mutex) ;

17 }

18 if (pepp->cur >= 0) {

19 p = pcpp->pool[pcpp->curl;

20 pcpp->pool [pcpp->cur--] = NULL;

21 return p;

2 ¥

23 return NULL;

24}

implement the loop moving blocks from the local to the global pool, and
line 13 sets the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block into the per-thread
pool.

Quick Quiz 6.23: Doesn’t this resource-allocator design resemble that of the
approximate limit counters covered in Section 5.3? W

6.4.3.6 Performance

Rough performance results'® are shown in Figure 6.21, running on a dual-
core Intel x86 running at 1 GHz (4300 bogomips per CPU) with at most
six blocks allowed in each CPU’s cache. In this micro-benchmark, each

16 This data was not collected in a statistically meaningful way, and therefore should be
viewed with great skepticism and suspicion. Good data-collection and -reduction practice is
discussed in Chapter 11. That said, repeated runs gave similar results, and these results match
more careful evaluations of similar algorithms.

Listing 6.11: Allocator-Cache Free Function

1 void memblock_free(struct memblock *p)

2 {

3 int i;

4 struct perthreadmempool *pcpp;

5

6 pepp = &__get_thread_var(perthreadmem) ;

7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {

8 spin_lock(&globalmem.mutex) ;

9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool [++globalmem.cur] = pcpp->pool[il;
11 pcpp->pool[i] = NULL;

12

13 pcpp->cur = ij;

14 spin_unlock(&globalmem.mutex) ;

15 i

16 pcpp->pool [++pcpp->cur] = p;

17 3}

thread repeatedly allocates a group of blocks and then frees all the blocks in
that group, with the number of blocks in the group being the “allocation
run length” displayed on the x-axis. The y-axis shows the number of
successful allocation/free pairs per microsecond—failed allocations are not
counted. The “X”’s are from a two-thread run, while the “+”’s are from a
single-threaded run.

Note that run lengths up to six scale linearly and give excellent per-
formance, while run lengths greater than six show poor performance and
almost always also show negative scaling. It is therefore quite important
to size TARGET_POOL_SIZE sufficiently large, which fortunately is usu-
ally quite easy to do in actual practice [MSKO1], especially given today’s
large memories. For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case allocations and frees are
guaranteed to be confined to per-thread pools at least 99 % of the time.

As can be seen from the figure, the situations where the common-case
data-ownership applies (run lengths up to six) provide greatly improved
performance compared to the cases where locks must be acquired. Avoiding
synchronization in the common case will be a recurring theme through this
book.

219

30 T T T T
T SXXXXX %
S 25t -
Q
7]
o
S 2| _
S 0
k4 +++
15 T -
[0}
o
(TR
s 10 F +HX o -
£ T e
§ 5 X —
= XX XR K5 XXX

0 ! ! ! !

0 5 10 15 20 25

Allocation Run Length

Figure 6.21: Allocator Cache Performance

Quick Quiz 6.24: In Figure 6.21, there is a pattern of performance rising with
increasing run length in groups of three samples, for example, for run lengths 10,
11,and 12. Why? H

Quick Quiz 6.25: Allocation failures were observed in the two-thread tests at
run lengths of 19 and greater. Given the global-pool size of 40 and the per-thread
target pool size s of three, number of threads n equal to two, and assuming that the
per-thread pools are initially empty with none of the memory in use, what is the
smallest allocation run length m at which failures can occur? (Recall that each
thread repeatedly allocates m block of memory, and then frees the m blocks of
memory.) Alternatively, given n threads each with pool size s, and where each
thread repeatedly first allocates m blocks of memory and then frees those m blocks,
how large must the global pool size be? Note: Obtaining the correct answer will
require you to examine the smpalloc.c source code, and very likely single-step
it as well. You have been warned! W

6.4.3.7 Validation

Validation of this simple allocator spawns a specified number of threads,
with each thread repeatedly allocating a specified number of memory blocks
and then deallocating them. This simple regimen suffices to exercise both
the per-thread caches and the global pool, as can be seen in Figure 6.21.

Much more aggressive validation is required for memory allocators
that are to be used in production. The test suites for tcmalloc [Ken20]
and jemalloc [Eval 1] are instructive, as are the tests for the Linux kernel’s
memory allocator.

6.4.3.8 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs
expand on this approach in a number of ways.

First, real-world allocators are required to handle a wide range of
allocation sizes, as opposed to the single size shown in this toy example.
One popular way to do this is to offer a fixed set of sizes, spaced so as to
balance external and internal fragmentation, such as in the late-1980s BSD
memory allocator [MK88]. Doing this would mean that the “globalmem”
variable would need to be replicated on a per-size basis, and that the
associated lock would similarly be replicated, resulting in data locking rather
than the toy program’s code locking.

Second, production-quality systems must be able to repurpose memory,
meaning that they must be able to coalesce blocks into larger structures,
such as pages [MS93]. This coalescing will also need to be protected by a
lock, which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the underlying memory
system, and pages of memory must also be allocated from the underlying
memory system. The locking required at this level will depend on that of the
underlying memory system, but could well be code locking. Code locking
can often be tolerated at this level, because this level is so infrequently
reached in well-designed systems [MSKO1].

Concurrent userspace allocators face similar challenges [Ken20, Evall].

Despite this real-world design’s greater complexity, the underlying idea
is the same—repeated application of parallel fastpath, as shown in Table 6.1.

221

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

And “parallel fastpath” is one of the solutions to the non-partitionable
application problem put forth on page 173.

6.5 Beyond Partitioning

It is all right to aim high if you have plenty of
ammunition.

HAwWLEY R. EVERHART

This chapter has discussed how data partitioning can be used to design simple
linearly scalable parallel programs. Section 6.3.4 hinted at the possibilities
of data replication, which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication is to achieve
linear speedups, in other words, to ensure that the total amount of work
required does not increase significantly as the number of CPUs or threads
increases. A problem that can be solved via partitioning and/or replication,
resulting in linear speedups, is embarrassingly parallel. But can we do
better?

To answer this question, let us examine the solution of labyrinths and
mazes. Of course, labyrinths and mazes have been objects of fascination

229

for millennia [Wik12], so it should come as no surprise that they are gener-
ated and solved using computers, including biological computers [Adal 1],
GPGPUs [Eri08], and even discrete hardware [KFC11]. Parallel solution of
mazes is sometimes used as a class project in universities [ETH11, Unil0]
and as a vehicle to demonstrate the benefits of parallel-programming frame-
works [Fos10].

Common advice is to use a parallel work-queue algorithm
(PWQ) [ETH11, Fos10]. This section evaluates this advice by comparing
PWQ against a sequential algorithm (SEQ) and also against an alternative
parallel algorithm, in all cases solving randomly generated square mazes.
Section 6.5.1 discusses PWQ, Section 6.5.2 discusses an alternative parallel
algorithm, Section 6.5.4 analyzes its anomalous performance, Section 6.5.5
derives an improved sequential algorithm from the alternative parallel algo-
rithm, Section 6.5.6 makes further performance comparisons, and finally
Section 6.5.7 presents future directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Listing 6.12 (pseudocode for
maze_seq.c). The maze is represented by a 2D array of cells and a
linear-array-based work queue named ->visited.

Line 7 visits the initial cell, and each iteration of the loop spanning
lines 8-21 traverses passages headed by one cell. The loop spanning
lines 9—13 scans the ->visited[] array for a visited cell with an unvisited
neighbor, and the loop spanning lines 14—-19 traverses one fork of the
submaze headed by that neighbor. Line 20 initializes for the next pass
through the outer loop.

The pseudocode for maze_try_visit_cell() is shown on lines 1-12
of Listing 6.13 (maze. c). Line 4 checks to see if cells ¢ and t are adjacent
and connected, while line 5 checks to see if cell t has not yet been visited.
The celladdr () function returns the address of the specified cell. If either
check fails, line 6 returns failure. Line 7 indicates the next cell, line 8
records this cell in the next slot of the ->visited[] array, line 9 indicates
that this slot is now full, and line 10 marks this cell as visited and also
records the distance from the maze start. Line 11 then returns success.

223

Listing 6.12: SEQ Pseudocode

| int maze_solve(maze *mp, cell sc, cell ec)

2 {

3 cell ¢ = sc;

4 cell n;

5 int vi = 0;

6

7 maze_try_visit_cell(mp, ¢, c, &n, 1);

8 for (5;) {

9 while ('maze_find_any_next_cell(mp, c, &n)) {

10 if (++vi >= mp->vi)

11 return O;

12 ¢ = mp->visited[vi].c;

13 }

14 do {

15 if (n == ec) {

16 return 1;

17 }

18 c =n;

19 } while (maze_find_any_next_cell(mp, c, &n));

20 ¢ = mp->visited[vi].c;

21 }

2 }
1 2 3
2 3 4
3 4 5

Figure 6.22: Cell-Number Solution Tracking

The pseudocode for maze_find_any_next_cell() is shown on
lines 14-28 of Listing 6.13 (maze.c). Line 17 picks up the current
cell’s distance plus 1, while lines 19, 21, 23, and 25 check the cell in each
direction, and lines 20, 22, 24, and 26 return true if the corresponding cell
is a candidate next cell. The prevcol(), nextcol(), prevrow(), and
nextrow () each do the specified array-index-conversion operation. If none
of the cells is a candidate, line 27 returns false.

224

Listing 6.13: SEQ Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, cell c, cell t,

1

2 cell *n, int d)

3 {

4 if (!maze_cells_connected(mp, c, t) ||

5 (*celladdr(mp, t) & VISITED))

6 return O;

7 *n = t;

8 mp->visited[mp->vi] = t;

9 mp->vit++;

10 *celladdr (mp, t) |= VISITED | d;

11 return 1;

2}

13

14 int maze_find_any_next_cell(struct maze *mp, cell c,

15 cell *n)

16 {

17 int d = (*celladdr(mp, c) & DISTANCE) + 1;

18

19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;

21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;

23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;

25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;

27 return 0;

28 }

The path is recorded in the maze by counting the number of cells from
the starting point, as shown in Figure 6.22, where the starting cell is in the
upper left and the ending cell is in the lower right. Starting at the ending cell
and following consecutively decreasing cell numbers traverses the solution.

The parallel work-queue solver is a straightforward parallelization of the
algorithm shown in Listings 6.12 and 6.13. Line 10 of Listing 6.12 must use
fetch-and-add, and the local variable vi must be shared among the various
threads. Lines 5 and 10 of Listing 6.13 must be combined into a CAS loop,
with CAS failure indicating a loop in the maze. Lines 8-9 of this listing
must use fetch-and-add to arbitrate concurrent attempts to record cells in
the ->visited[] array.

This approach does provide significant speedups on a dual-CPU Lenovo
WS500 running at 2.53 GHz, as shown in Figure 6.23, which shows the
cumulative distribution functions (CDFs) for the solution times of the

025

o o
© ©
T T

Probability
o
(6]
T

0) I I I I
0 20 40 60 80 100 120 140

CDF of Solution Time (ms)

Figure 6.23: CDF of Solution Times For SEQ and PWQ

two algorithms, based on the solution of 500 different square 500-by-500
randomly generated mazes. The substantial overlap of the projection of the
CDFs onto the x-axis will be addressed in Section 6.5.4.

Interestingly enough, the sequential solution-path tracking works un-
changed for the parallel algorithm. However, this uncovers a significant
weakness in the parallel algorithm: At most one thread may be making
progress along the solution path at any given time. This weakness is
addressed in the next section.

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends, and this
advice has been repeated more recently in the context of automated maze
solving [Unil0]. This advice amounts to partitioning, which has been a
powerful parallelization strategy in the context of parallel programming
for both operating-system kernels [BK85, Inm85] and applications [Pat10].
This section applies this strategy, using two child threads that start at opposite
ends of the solution path, and takes a brief look at the performance and
scalability consequences.

226

Listing 6.14: Partitioned Parallel Solver Pseudocode

| int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {

3 cell c;

4 cell n;

5 int vi = 0;

6

7 myvisited = visited; myvi = &vi;

8 c = visited[vil;

9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)

12 return 0;

13 if (READ_ONCE(mp->done))

14 return 1;

15 c = visited[vi];

16 }

17 do {

18 if (READ_ONCE (mp->done))

19 return 1;

20 c = n;

21 } while (maze_find_any_next_cell(mp, c, &n));
2 c = visited[vil;

23 } while (!READ_ONCE(mp->done));

24 return 1;

25 }

The partitioned parallel algorithm (PART), shown in Listing 6.14
(maze_part.c), is similar to SEQ, but has a few important differences.
First, each child thread has its own visited array, passed in by the parent
as shown on line 1, which must be initialized to all [-1, —1]. Line 7 stores a
pointer to this array into the per-thread variable myvisited to allow access
by helper functions, and similarly stores a pointer to the local visit index.
Second, the parent visits the first cell on each child’s behalf, which the child
retrieves on line 8. Third, the maze is solved as soon as one child locates
a cell that has been visited by the other child. When maze_try_visit_
cell () detects this, it sets a —>done field in the maze structure. Fourth,
each child must therefore periodically check the ->done field, as shown
on lines 13, 18, and 23. The READ_ONCE() primitive must disable any
compiler optimizations that might combine consecutive loads or that might
reload the value. A C++1x volatile relaxed load suffices [Smil9]. Finally,
the maze_find_any_next_cell() function must use compare-and-swap

227

Listing 6.15: Partitioned Parallel Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, int c, int t,

1

2 int *n, int d)

3 {

4 cell_t t;

5 cell_t *tp;

6 int vi;

7

3 if (!'maze_cells_connected(mp, c, t))
9 return 0;

10 tp = celladdr(mp, t);

1 do {

12 t = READ_ONCE (*tp) ;

13 if (t & VISITED) {

14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;

17 }

18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;

20 vi = (*myvi)++;

21 myvisited[vi] = t;

22 return 1;

23}

to mark a cell as visited, however no constraints on ordering are required
beyond those provided by thread creation and join.

The pseudocode for maze_find_any_next_cell () isidentical to that
shown in Listing 6.13, but the pseudocode for maze_try_visit_cell()
differs, and is shown in Listing 6.15. Lines 8-9 check to see if the cells are
connected, returning failure if not. The loop spanning lines 11-18 attempts
to mark the new cell visited. Line 13 checks to see if it has already been
visited, in which case line 16 returns failure, but only after line 14 checks to
see if we have encountered the other thread, in which case line 15 indicates
that the solution has been located. Line 19 updates to the new cell, lines 20
and 21 update this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly, shown in Figure 6.24.
The median solution time for PART (17 milliseconds) is more than four
times faster than that of SEQ (79 milliseconds), despite running on only two
threads.

228

o o
© ©
T T

Probability
o
(6]
T

0 L I I I I
0 20 40 60 80 100 120 140
CDF of Solution Time (ms)

Figure 6.24: CDF of Solution Times For SEQ, PWQ, and PART

The first reaction to such a dramatic performance anomaly is to check
for bugs, which suggests stringent validation be applied. This is the topic of
the next section.

6.5.3 Maze Validation

Much of the validation effort comprised consistency checks, which can be
located by searching for ABORT () in CodeSamples/SMPdesign/maze/*.
c. Examples checks include:

1. Maze solution steps that end up outside of the maze.

2. Mazes that suddenly have zero or fewer rows or columns.
3. Newly created mazes with unreachable cells.

4. Mazes that have no solution.

5. Discontinuous maze solutions.

6. Attempts to start the maze solver outside of the maze.

229

1 —r—rrrrrm
0.9
0.8

/
07 | j

0.6
0.5 | SEQ/PWQ ‘/ SEQ/PART —

04 - /,‘ -
0.3 /
!

02| /
0.1 k
10 100

0.1 1
CDF of Speedup Relative to SEQ

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART Solution-Time Ratios

Probability
T

7. Mazes whose solution path is longer than the number of cells in the

maze.

8. Subsolutions by different threads cross each other.
9. Memory-allocation failure.

10. System-call failure.
Additional manual validation was applied by Paul’s wife, who greatly

enjoys solving puzzles.
However, if this maze software was to be used in production, whatever

that might mean, it would be wise to construct an independent maze fsck
program. Nevertheless, the mazes and solutions all proved to be quite valid.
The next section therefore more deeply analyzes the scalability anomaly

called out in Section 6.5.2.

6.5.4 Performance Comparison I

Although the algorithms were in fact finding valid solutions to valid mazes,
the plot of CDFs in Figure 6.24 assumes independent data points. This is
not the case: The performance tests randomly generate a maze, and then

()
w

e.

—1-]
==ujhl

=
il

Figure 6.26: Reason for Small Visit Percentages

—-

run all solvers on that maze. It therefore makes sense to plot the CDF of the
ratios of solution times for each generated maze, as shown in Figure 6.25,
greatly reducing the CDFs’ overlap. This plot reveals that for some mazes,
PART is more than forty times faster than SEQ. In contrast, PWQ is never
more than about two times faster than SEQ. A forty-times speedup on two
threads demands explanation. After all, this is not merely embarrassingly
parallel, where partitionability means that adding threads does not increase
the overall computational cost. It is instead humiliatingly parallel: Adding
threads significantly reduces the overall computational cost, resulting in
large algorithmic superlinear speedups.

Further investigation showed that PART sometimes visited fewer than
2 % of the maze’s cells, while SEQ and PWQ never visited fewer than
about 9 %. The reason for this difference is shown by Figure 6.26. If the
thread traversing the solution from the upper left reaches the circle, the other
thread cannot reach the upper-right portion of the maze. Similarly, if the
other thread reaches the square, the first thread cannot reach the lower-left
portion of the maze. Therefore, PART will likely visit a small fraction of
the non-solution-path cells. In short, the superlinear speedups are due to
threads getting in each others’ way. This is a sharp contrast with decades
of experience with parallel programming, where workers have struggled to
keep threads out of each others’ way.

Figure 6.27 confirms a strong correlation between cells visited and
solution time for all three methods. The slope of PART’s scatterplot is

MW r—T—T—TT T T T T

120 [A

Solution Time (ms)

ol
0 10 20 30 40 50 60 70 80 90 100
Percent of Maze Cells Visited

Figure 6.27: Correlation Between Visit Percentage and Solution Time

o ﬁjo'_ A

I

Figure 6.28: PWQ Potential Contention Points

smaller than that of SEQ, indicating that PART’s pair of threads visits a
given fraction of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percentages, confirming that
PART does less total work, hence the observed humiliating parallelism.
This humiliating parallelism also provides more than 2x speedup on two
CPUs, as put forth in page 173.

The fraction of cells visited by PWQ is similar to that of SEQ. In
addition, PWQ’s solution time is greater than that of PART, even for equal
visit fractions. The reason for this is shown in Figure 6.28, which has a red

()
w
)

1 R i e

09 s
/ PART

0.8 | b
07 | L
0.6 | b -
05 F PWQ| -
0.4 h
03 - i
0.2 /f .
0.1 | i 'SEQ -03 -

o .

Probability

0.1 1 10 100
CDF of Speedup Relative to SEQ

Figure 6.29: Effect of Compiler Optimization (-O3)

circle on each cell with more than two neighbors. Each such cell can result
in contention in PWQ, because one thread can enter but two threads can exit,
which hurts performance, as noted earlier in this chapter. In contrast, PART
can incur such contention but once, namely when the solution is located.
Of course, SEQ never contends.

Quick Quiz 6.26: Given that a 2D maze achieved 4x speedup on two CPUs,
would a 3D maze achieve an 8x speedup on two CPUs? H

Although PART’s speedup is impressive, we should not neglect sequen-
tial optimizations. Figure 6.29 shows that SEQ, when compiled with -O3,
is about twice as fast as unoptimized PWQ, approaching the performance
of unoptimized PART. Compiling all three algorithms with -O3 gives
results similar to (albeit faster than) those shown in Figure 6.25, except
that PWQ provides almost no speedup compared to SEQ, in keeping with
Amdahl’s Law [Amd67]. However, if the goal is to double performance
compared to unoptimized SEQ, as opposed to achieving optimality, compiler
optimizations are quite attractive.

Cache alignment and padding often improves performance by reducing
false sharing. However, for these maze-solution algorithms, aligning and
padding the maze-cell array degrades performance by up to 42 % for

1 ——rrrm

09 |
08 |
07 b
06
05k
04
03
02
01 b

0 Ay PR N EEET]
0.1 1 10 100

CDF of Speedup Relative to SEQ (-O3)

PWQ

Probability

Figure 6.30: Partitioned Coroutines

1000x1000 mazes. Cache locality is more important than avoiding false
sharing, especially for large mazes. For smaller 20-by-20 or 50-by-50 mazes,
aligning and padding can produce up to a 40 % performance improvement
for PART, but for these small sizes, SEQ performs better anyway because
there is insufficient time for PART to make up for the overhead of thread
creation and destruction.

In short, the partitioned parallel maze solver is an interesting example
of an algorithmic superlinear speedup. If “algorithmic superlinear speedup’
causes cognitive dissonance, please proceed to the next section.

i

6.5.5 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups suggests simulating
parallelism via co-routines, for example, manually switching context between
threads on each pass through the main do-while loop in Listing 6.14. This
context switching is straightforward because the context consists only of
the variables ¢ and vi: Of the numerous ways to achieve the effect, this
is a good tradeoff between context-switch overhead and visit percentage.
As can be seen in Figure 6.30, this coroutine algorithm (COPART) is quite

Speedup Relative to SEQ (-O3)
[}
T
1

2 -

10 100 1000
Maze Size

Figure 6.31: Varying Maze Size vs. SEQ

effective, with the performance on one thread being within about 30 % of
PART on two threads (maze_2seq. c).

6.5.6 Performance Comparison II

Figures 6.31 and 6.32 show the effects of varying maze size, comparing both
PWQ and PART running on two threads against either SEQ or COPART,
respectively, with 90-percent-confidence error bars. PART shows superlinear
scalability against SEQ and modest scalability against COPART for 100-
by-100 and larger mazes. PART exceeds theoretical energy-efficiency
breakeven against COPART at roughly the 200-by-200 maze size, given
that power consumption rises as roughly the square of the frequency for
high frequencies [MudO1], so that 1.4x scaling on two threads consumes the
same energy as a single thread at equal solution speeds. In contrast, PWQ
shows poor scalability against both SEQ and COPART unless unoptimized:
Figures 6.31 and 6.32 were generated using -O3.

Figure 6.33 shows the performance of PWQ and PART relative to
COPART. For PART runs with more than two threads, the additional
threads were started evenly spaced along the diagonal connecting the
starting and ending cells. Simplified link-state routing [BG87] was used

)

18 ——r——
16 | o v
14 ‘
12+

0.8 -
0.6 [~
04

02

Speedup Relative to COPART (-O3)

10 100 1000
Maze Size

Figure 6.32: Varying Maze Size vs. COPART

3.5 T T T T T T

Mean Speedup Relative to COPART (-O3)

1 2 3 4 5 6 7 8
Number of Threads

Figure 6.33: Mean Speedup vs. Number of Threads, 1000x1000 Maze

[

236

to detect early termination on PART runs with more than two threads
(the solution is flagged when a thread is connected to both beginning and
end). PWQ performs quite poorly, but PART hits breakeven at two threads
and again at five threads, achieving modest speedups beyond five threads.
Theoretical energy efficiency breakeven is within the 90-percent-confidence
interval for seven and eight threads. The reasons for the peak at two threads
are (1) the lower complexity of termination detection in the two-thread case
and (2) the fact that there is a lower probability of the third and subsequent
threads making useful forward progress: Only the first two threads are
guaranteed to start on the solution line. This disappointing performance
compared to results in Figure 6.32 is due to the less-tightly integrated
hardware available in the larger and older Xeon system running at 2.66 GHz.

Quick Quiz 6.27: Why place the third, fourth, and so on threads on the diagonal?
Why not instead distribute them evenly around the maze? H

6.5.7 Future Directions and Conclusions

Much future work remains. First, this section applied only one technique used
by human maze solvers. Others include following walls to exclude portions
of the maze and choosing internal starting points based on the locations of
previously traversed paths. Second, different choices of starting and ending
points might favor different algorithms. Third, although placement of the
PART algorithm’s first two threads is straightforward, there are any number
of placement schemes for the remaining threads. Optimal placement might
well depend on the starting and ending points. Fourth, study of unsolvable
mazes and cyclic mazes is likely to produce interesting results. Fifth, the
lightweight C++11 atomic operations might improve performance. Sixth, it
would be interesting to compare the speedups for three-dimensional mazes
(or of even higher-order mazes). Finally, for mazes, humiliating parallelism
indicated a more-efficient sequential implementation using coroutines. Do
humiliatingly parallel algorithms always lead to more-efficient sequential
implementations, or are there inherently humiliatingly parallel algorithms
for which coroutine context-switch overhead overwhelms the speedups?

237

This section demonstrated and analyzed parallelization of maze-solution
algorithms. A conventional work-queue-based algorithm did well only
when compiler optimizations were disabled, suggesting that some prior
results obtained using high-level/overhead languages will be invalidated by
advances in optimization.

This section gave a clear example where approaching parallelism as a
first-class optimization technique rather than as a derivative of a sequential
algorithm paves the way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a fruitful field of study.
This section took the problem of solving mazes from mildly scalable to
humiliatingly parallel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time whole-application
optimization technique, rather than as a grossly suboptimal after-the-fact
micro-optimization to be retrofitted into existing programs.

6.6 Partitioning, Parallelism, and Optimization

Knowledge is of no value unless you put it into
practice.

ANTON CHEKHOV

Most important, although this chapter has demonstrated that applying
parallelism at the design level gives excellent results, this final section
shows that this is not enough. For search problems such as maze solution,
this section has shown that search strategy is even more important than
parallel design. Yes, for this particular type of maze, intelligently applying
parallelism identified a superior search strategy, but this sort of luck is no
substitute for a clear focus on search strategy itself.

Asnoted back in Section 2.2, parallelism is but one potential optimization
of many. A successful design needs to focus on the most important opti-
mization. Much though I might wish to claim otherwise, that optimization
might or might not be parallelism.

However, for the many cases where parallelism is the right optimization,
the next section covers that synchronization workhorse, locking.

.
w
3

Chapter 7
Locking

Locking is the worst general-purpose
synchronization mechanism except for all those
other mechanisms that have been tried from time to
time.

WITH APOLOGIES TO THE MEMORY OF WINSTON CHURCHILL
AND TO WHOEVER HE WAS QUOTING

In recent concurrency research, locking often plays the role of villain. Lock-
ing stands accused of inciting deadlocks, convoying, starvation, unfairness,
data races, and all manner of other concurrency sins. Interestingly enough,
the role of workhorse in production-quality shared-memory parallel software
is also played by locking. This chapter will look into this dichotomy between
villain and hero, as fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solutions that work
well in most cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the Linux kernel’s lock-
dep facility [CorO6a].

(c) Locking-friendly data structures, such as arrays, hash tables,
and radix trees, which will be covered in Chapter 10.

2. Some of locking’s sins are problems only at high levels of contention,
levels reached only by poorly designed programs.

3. Some of locking’s sins are avoided by using other synchronization
mechanisms in concert with locking. These other mechanisms
include statistical counters (see Chapter 5), reference counters (see

239

Section 9.2), hazard pointers (see Section 9.3), sequence-locking
readers (see Section 9.4), RCU (see Section 9.5), and simple non-
blocking data structures (see Section 14.2).

4. Until quite recently, almost all large shared-memory parallel programs
were developed in secret, so that it was not easy to learn of these
pragmatic solutions.

5. Locking works extremely well for some software artifacts and ex-
tremely poorly for others. Developers who have worked on artifacts
for which locking works well can be expected to have a much more
positive opinion of locking than those who have worked on artifacts
for which locking works poorly, as will be discussed in Section 7.5.

6. All good stories need a villain, and locking has a long and honorable
history serving as a research-paper whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping boy be considered to be in
any way honorable??? H

This chapter will give an overview of a number of ways to avoid locking’s
more serious sins.

240

Figure 7.2: Locking: Workhorse or Hero?

v2025.12.18a

241

7.1 Staying Alive

I work to stay alive.

BETTE DAvis

Given that locking stands accused of deadlock and starvation, one important
concern for shared-memory parallel developers is simply staying alive. The
following sections therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

7.1.1 Deadlock

Deadlock occurs when each member of a group of threads is holding at least
one lock while at the same time waiting on a lock held by a member of that
same group. This happens even in groups containing a single thread when
that thread attempts to acquire a non-recursive lock that it already holds.
Deadlock can therefore occur even given but one thread and one lock!

Without some sort of external intervention, deadlock is forever. No
thread can acquire the lock it is waiting on until that lock is released by the
thread holding it, but the thread holding it cannot release it until the holding
thread acquires the lock that it is in turn waiting on.

We can create a directed-graph representation of a deadlock scenario
with nodes for threads and locks, as shown in Figure 7.3. An arrow from
a lock to a thread indicates that the thread holds the lock, for example,
Thread B holds Locks 2 and 4. An arrow from a thread to a lock indicates
that the thread is waiting on the lock, for example, Thread B is waiting on
Lock 3.

A deadlock scenario will always contain at least one deadlock cycle. In
Figure 7.3, this cycle is Thread B, Lock 3, Thread C, Lock 4, and back to
Thread B.

Quick Quiz 7.2: But the definition of lock-based deadlock only said that each
thread was holding at least one lock and waiting on another lock that was held by
some thread. How do you know that there is a cycle? H

242

Lock 1
Thread A %[Lock 2]
[Lock 3]e Thread B
Thread C %[Lock 4]

Figure 7.3: Deadlock Cycle

Although there are some software environments such as database systems
that can recover from an existing deadlock, this approach requires either that
one of the threads be killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing works well for transactions, but is
often problematic for kernel and application-level use of locking: Dealing
with the resulting partially updated structures can be extremely complex,
hazardous, and error-prone.

Therefore, kernels and applications should instead avoid deadlocks.
Deadlock-avoidance strategies include locking hierarchies (Section 7.1.1.1),
local locking hierarchies (Section 7.1.1.2), layered locking hierarchies (Sec-
tion 7.1.1.3), temporal locking hierarchies (Section 7.1.1.4), strategies for
dealing with APIs containing pointers to locks (Section 7.1.1.5), conditional
locking (Section 7.1.1.6), acquiring all needed locks first (Section 7.1.1.7),
single-lock-at-a-time designs (Section 7.1.1.8), and strategies for signal/in-
terrupt handlers (Section 7.1.1.9). Although there is no deadlock-avoidance
strategy that works perfectly for all situations, there is a good selection of
tools to choose from.

243
7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring locks out of
order. In Figure 7.3, we might order the locks numerically, thus forbidding
a thread from acquiring a given lock if it already holds a lock with the
same or a higher number. Thread B has violated this hierarchy because
it is attempting to acquire Lock 3 while holding Lock 4. This violation
permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks and prohibit out-of-
order lock acquisition. For different types of locks, it is helpful to have a
carefully considered hierarchy from one type to the next. For many instances
of the same type of lock, for example, a per-node lock in a search tree, the
traditional approach is to carry out lock acquisition in order of the addresses
of the locks to be acquired. Either way, in large program, it is wise to use
tools such as the Linux-kernel 1lockdep [Cor06a] to enforce your locking
hierarchy.

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies makes them difficult
to apply to library functions. After all, when a program using a given
library function has not yet been written, how can the poor library-function
implementor possibly follow the yet-to-be-defined locking hierarchy?

One special (but common) case is when the library function does not
invoke any of the caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that there cannot be a
deadlock cycle containing locks from both the library and the caller.

Quick Quiz 7.3: Are there any exceptions to this rule, so that there really could
be a deadlock cycle containing locks from both the library and the caller, even
given that the library code never invokes any of the caller’s functions? H

But suppose that a library function does invoke the caller’s code. For
example, gsort () invokes a caller-provided comparison function. Now,
normally this comparison function will operate on unchanging local data, so
that it need not acquire locks, as shown in Figure 7.4. But maybe someone
is crazy enough to sort a collection whose keys are changing, thus requiring

244

Figure 7.4: No gsort () Compare-Function Locking

that the comparison function acquire locks, which might result in deadlock,
as shown in Figure 7.5. How can the library function avoid this deadlock?

The golden rule in this case is “Release all locks before invoking
unknown code.” To follow this rule, the gsort () function must release all
of its locks before invoking the comparison function. Thus gsort () will
not be holding any of its locks while the comparison function acquires any
of the caller’s locks, thus avoiding deadlock.

Quick Quiz 7.4: But if gsort() releases all its locks before invoking the
comparison function, how can it protect against races with other gsort () threads?

To see the benefits of local locking hierarchies, compare Figures 7.5
and 7.6. In both figures, application functions foo () and bar () invoke
gsort () while holding Locks A and B, respectively. Because this is a
parallel implementation of gsort (), it acquires Lock C. Function foo ()
passes function cmp () to gsort (), and cmp () acquires Lock B. Function
bar () passes a simple integer-comparison function (not shown) to gsort (),
and this simple function does not acquire any locks.

v2025.12.18a

245

Figure 7.5: Without gsort () Local Locking Hierarchy

Figure 7.6: Local Locking Hierarchy for gsort ()

v2025.12.18a

246

Now, if gsort () holds Lock C while calling cmp () in violation of the
golden release-all-locks rule above, as shown in Figure 7.5, deadlock can
occur. To see this, suppose that one thread invokes foo () while a second
thread concurrently invokes bar (). The first thread will acquire Lock A and
the second thread will acquire Lock B. If the first thread’s call to gsort ()
acquires Lock C, then it will be unable to acquire Lock B when it calls
cmp (). But the first thread holds Lock C, so the second thread’s call to
gsort () will be unable to acquire it, and thus unable to release Lock B,
resulting in deadlock.

In contrast, if gsort () releases Lock C before invoking the comparison
function, which is unknown code from gsort () ’s perspective, then deadlock
is avoided as shown in Figure 7.6.

If each module releases all locks before invoking unknown code, then
deadlock is avoided if each module separately avoids deadlock. This
rule therefore greatly simplifies deadlock analysis and greatly improves
modularity.

Nevertheless, this golden rule comes with a warning. When you release
those locks, any state that they protect is subject to arbitrary changes, changes
that are all too easy for the function’s caller to forget, resulting in subtle
and difficult-to-reproduce bugs. Because the gsort () comparison function
rarely acquires locks, let’s switch to a different example.

Consider the recursive tree iterator in Listing 7.1 (rec_tree_itr.c).
The iterator visits every node in the tree, invoking a user’s callback function.
The tree lock is released before the invocation and re-acquired after return.
This code makes dangerous assumptions: (1) The number of children of the
current node has not changed, (2) The ancestors stored on the stack by the
recursion are still there, and (3) The visited node itself has not been removed
and freed. A few of these hazards can be encountered if one thread calls
tree_add () while another thread releases the tree’s lock to run a callback
function.

Quick Quiz 7.5: So the iterating thread may or may not observe the added child.
What is the big deal? W

One strategy is to ensure that state is preserved despite the lock being
released, for example, by acquiring a reference on a node to prevent it from

247

Figure 7.7: Layered Locking Hierarchy for gsort ()

being freed. Alternatively, the state can be re-initialized once the lock is
re-acquired after the callback function returns.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might be infeasible to preserve state on the one hand or
to re-initialize it on the other, thus ruling out a local locking hierarchy
where all locks are released before invoking unknown code. However, we
can instead construct a layered locking hierarchy, as shown in Figure 7.7.
Here, the cmp () function uses a new Lock D that is acquired after all of
Locks A, B, and C, avoiding deadlock. We therefore have three layers to the
global deadlock hierarchy, the first containing Locks A and B, the second
containing Lock C, and the third containing Lock D.
v2025.12.18a

248

Listing 7.1: Recursive Tree Iterator

1
2
3
4
5

struct node {
int data;
int nchildren;
struct node **children;

};

struct tree {
spinlock_t s;
struct node *root;

};

void tree_for_each_rec(struct tree *tr, struct node *nd,
void (*callback) (struct node *))
{

struct node *xitr;

spin_unlock(&tr->s);
callback(nd);
spin_lock(&tr->s);

itr = nd->children;

for (int i = 0; i < nd->nchildren; i++) {
tree_for_each_rec(tr, *itr, callback);
itr++;

}

void tree_for_each(struct tree *tr,
void (*callback) (struct node *))

{
spin_lock(&tr->s);
tree_for_each_rec(tr, tr->root, callback);
spin_unlock(&tr->s);

}

void tree_add(struct tree *tr, struct node *parent,
struct node *new_child)
{
spin_lock(&tr->s);
parent->nchildren++;
parent->children = realloc(parent->children,
sizeof (struct node *) *
parent->nchildren) ;
parent->children[parent->nchildren - 1] = new_child;
spin_unlock(&tr->s) ;

249

Listing 7.2: Concurrent List Iterator

struct locked_list {

1

2 spinlock_t s;

3 struct cds_list_head h;

4}

5

6 struct cds_list_head *list_start(struct locked_list *1p)
7 {

8 spin_lock(&lp->s);

9 return list_next(lp, &lp->h);

10 ¥

11

12 struct cds_list_head *list_next(struct locked_list *1p,
13 struct cds_list_head *np)
14 {

15 struct cds_list_head *ret;

16

17 ret = np->next;

18 if (ret == &lp->h) {

19 spin_unlock(&lp->s);

20 ret = NULL;

21 }

22 return ret;

23 }

Please note that it is not typically possible to mechanically change
cmp () to use the new Lock D. Quite the opposite: It is often necessary to
make profound design-level modifications. Nevertheless, the effort required
for such modifications is normally a small price to pay in order to avoid
deadlock. More to the point, this potential deadlock should preferably be
detected at design time, before any code has been generated!

For another example where releasing all locks before invoking unknown
code is impractical, imagine an iterator over a linked list, as shown in
Listing 7.2 (locked_list.c). The 1list_start() function acquires a
lock on the list and returns the first element (if there is one), and 1ist_
next () either returns a pointer to the next element in the list or releases the
lock and returns NULL if the end of the list has been reached.

Listing 7.3 shows how this list iterator may be used. Lines 1-4 define
the 1ist_ints element containing a single integer, and lines 6—17 show
how to iterate over the list. Line 11 locks the list and fetches a pointer to
the first element, line 13 provides a pointer to our enclosing 1ist_ints

Listing 7.3: Concurrent List Iterator Usage

struct list_ints {

1
2 struct cds_list_head n;

3 int a;

4}

5

6 void list_print(struct locked_list *1p)

7 {

8 struct cds_list_head *np;

9 struct list_ints *ip;

10

1 np = list_start(lp);

12 while (np != NULL) {

13 ip = cds_list_entry(np, struct list_ints, n);
14 printf ("\t%d\n", ip->a);

15 np = list_next(lp, np);

16 3

17 }

structure, line 14 prints the corresponding integer, and line 15 moves to the
next element. This is quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code processing each
list element does not itself acquire a lock that is held across some other call
to list_start() or list_next (), which results in deadlock. We can
avoid the deadlock by layering the locking hierarchy to take the list-iterator
locking into account.

This layered approach can be extended to an arbitrarily large number of
layers, but each added layer increases the complexity of the locking design.
Such increases in complexity are particularly inconvenient for some types
of object-oriented designs, in which control passes back and forth among a
large group of objects in an undisciplined manner.! This mismatch between
the habits of object-oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived by some to be so
difficult.

Some alternatives to highly layered locking hierarchies are covered in
Chapter 9.

! One name for this is “object-oriented spaghetti code.”

7.1.1.4 Temporal Locking Hierarchies

One way to avoid deadlock is to defer acquisition of one of the conflicting
locks. This approach is used in Linux-kernel RCU, whose call_rcu()
function is invoked by the Linux-kernel scheduler while holding its locks.
This means that call_rcu() cannot always safely invoke the scheduler to
do a wakeup, for example, in order to wake up an RCU kthread in order
to start the new grace period that is required by the callback queued by
call_rcu().

Quick Quiz 7.6: What do you mean “cannot always safely invoke the scheduler”?
Either call_rcu() can or cannot safely invoke the scheduler, right? Wl

However, grace periods last for many milliseconds, so waiting another
millisecond before starting a new grace period is not normally a problem.
Therefore, if call_rcu() detects a possible deadlock with the scheduler, it
arranges to start the new grace period later, either within a timer handler or
within the scheduler-clock interrupt handler, depending on configuration.
Because no scheduler locks are held across either handler, deadlock is
successfully avoided.

The overall approach is thus to adhere to a locking hierarchy by deferring
lock acquisition to an environment in which no locks are held.

7.1.1.5 Locking Hierarchies and Pointers to Locks

Although there are some exceptions, an external API containing a pointer to
a lock is very often a misdesigned API. Handing an internal lock to some
other software component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 7.7: Name one common situation where a pointer to a lock is passed
into a function. M

One exception is functions that hand off some entity, where the caller’s
lock must be held until the handoff is complete, but where the lock must
be released before the function returns. One example of such a function is
the POSIX pthread_cond_wait () function, where passing a pointer to a
pthread_mutex_t prevents hangs due to lost wakeups.

Listing 7.4: Protocol Layering and Deadlock

spin_lock(&lock2);
layer_2_processing(pkt);
nextlayer = layer_1(pkt);
spin_lock(&nextlayer->lockl) ;
spin_unlock(&lock2) ;
layer_1_processing(pkt);
spin_unlock(&nextlayer->lockl);

R T R I S

Quick Quiz 7.8: Doesn’t the fact that pthread_cond_wait () first releases the
mutex and then re-acquires it eliminate the possibility of deadlock? W

In short, if you find yourself exporting an API with a pointer to a lock
as an argument or as the return value, do yourself a favor and carefully
reconsider your API design. It might well be the right thing to do, but
experience indicates that this is unlikely.

7.1.1.6 Conditional Locking

But suppose that there is no reasonable locking hierarchy. This can happen
in real life, for example, in some types of layered network protocol stacks
where packets flow in both directions, for example, in implementations of
distributed lock managers. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet from one layer
to another. Given that packets travel both up and down the protocol stack,
this is an excellent recipe for deadlock, as illustrated in Listing 7.4. Here, a
packet moving down the stack towards the wire must acquire the next layer’s
lock out of order. Given that packets moving up the stack away from the
wire are acquiring the locks in order, the lock acquisition in line 4 of the
listing can result in deadlock.

One way to avoid deadlocks in this case is to impose a locking hierarchy,
but when it is necessary to acquire a lock out of order, acquire it conditionally,
as shown in Listing 7.5. Instead of unconditionally acquiring the layer-1
lock, line 5 conditionally acquires the lock using the spin_trylock()
primitive. This primitive acquires the lock immediately if the lock is
available (returning non-zero), and otherwise returns zero without acquiring
the lock.

&)
[
¥

Listing 7.5: Avoiding Deadlock Via Conditional Locking

| retry:

2 spin_lock(&lock2);

3 layer_2_processing(pkt);

4 nextlayer = layer_1(pkt);

5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock?2) ;

7 spin_lock(&nextlayer->lockl) ;

3 spin_lock(&lock2);

9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock(&nextlayer->lockl);
11 spin_unlock(&lock2) ;

12 goto retry;

13 }

14 }

15 spin_unlock(&lock2);

16 layer_1_processing(pkt) ;

17 spin_unlock(&nextlayer->lockl);

If spin_trylock() was successful, line 16 does the needed layer-1
processing. Otherwise, line 6 releases the lock, and lines 7 and 8 acquire
them in the correct order. Unfortunately, there might be multiple networking
devices on the system (e.g., Ethernet and WiFi), so that the layer_1()
function must make a routing decision. This decision might change at any
time, especially if the system is mobile.? Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and start over.

Quick Quiz 7.9: Can the transformation from Listing 7.4 to Listing 7.5 be applied
universally? Wl

Quick Quiz 7.10: But the complexity in Listing 7.5 is well worthwhile given
that it avoids deadlock, right? W

7.1.1.7 Acquire Needed Locks First

In an important special case of conditional locking, all needed locks are
acquired before any processing is carried out, where the needed locks might
be identified by hashing the addresses of the data structures involved. In this
case, processing need not be idempotent: If it turns out to be impossible to

2 And, in contrast to the 1900s, mobility is the common case.

254

acquire a given lock without first releasing one that was already acquired,
just release all the locks and try again. Only once all needed locks are held
will any processing be carried out.

However, this procedure can result in livelock, which will be discussed
in Section 7.1.2.

Quick Quiz 7.11: When using the “acquire needed locks first” approach described
in Section 7.1.1.7, how can livelock be avoided? W

A related approach, two-phase locking [BHG87], has seen long produc-
tion use in transactional database systems. In the first phase of a two-phase
locking transaction, locks are acquired but not released. Once all needed
locks have been acquired, the transaction enters the second phase, where
locks are released, but not acquired. This locking approach allows databases
to provide serializability guarantees for their transactions, in other words, to
guarantee that all values seen and produced by the transactions are consistent
with some global ordering of all the transactions. Many such systems rely on
the ability to abort transactions, although this can be simplified by avoiding
making any changes to shared data until all needed locks are acquired.
Livelock and deadlock are issues in such systems, but practical solutions
may be found in any of a number of database textbooks.

7.1.1.8 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus avoiding deadlock.
For example, if a problem is perfectly partitionable, a single lock may be
assigned to each partition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no thread ever holds
more than one lock at a time, deadlock is impossible.

However, there must be some mechanism to ensure that the needed data
structures remain in existence during the time that neither lock is held. One
such mechanism is discussed in Section 7.4 and several others are presented
in Chapter 9.

7.1.1.9 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dismissed by noting
that it is not legal to invoke pthread_mutex_lock() from within a signal
handler [Ope97]. However, it is possible (though often unwise) to hand-craft
locking primitives that can be invoked from signal handlers. Besides which,
almost all operating-system kernels permit locks to be acquired from within
interrupt handlers, which are analogous to signal handlers.

The trick is to block signals (or disable interrupts, as the case may
be) when acquiring any lock that might be acquired within a signal (or
an interrupt) handler. Furthermore, if holding such a lock, it is illegal to
attempt to acquire any lock that is ever acquired outside of a signal handler
without blocking signals.

Quick Quiz 7.12: Suppose Lock A is never acquired within a signal handler,
but Lock B is acquired both from thread context and by signal handlers. Suppose
further that Lock A is sometimes acquired with signals unblocked. Why is it
illegal to acquire Lock A holding Lock B? H

If a lock is acquired by the handlers for several signals, then each and
every one of these signals must be blocked whenever that lock is acquired,
even when that lock is acquired within a signal handler.

[Quick Quiz 7.13: How can you legally block signals within a signal handler? .]

Unfortunately, blocking and unblocking signals can be expensive in
some operating systems, notably including Linux, so performance concerns
often mean that locks acquired in signal handlers are only acquired in
signal handlers, and that lockless synchronization mechanisms are used to
communicate between application code and signal handlers.

Or that signal handlers are avoided completely except for handling fatal
errors.

Quick Quiz 7.14: If acquiring locks in signal handlers is such a bad idea, why
even discuss ways of making it safe? H

256
7.1.1.10 Discussion

There are a large number of deadlock-avoidance strategies available to the
shared-memory parallel programmer, but there are sequential programs for
which none of them is a good fit. This is one of the reasons that expert
programmers have more than one tool in their toolbox: Locking is a powerful
concurrency tool, but there are jobs better addressed with other tools.

Quick Quiz 7.15: Given an object-oriented application that passes control freely
among a group of objects such that there is no straightforward locking hierarchy,”
layered or otherwise, how can this application be parallelized? W

¢ Also known as “object-oriented spaghetti code.”

Nevertheless, the strategies described in this section have proven quite
useful in many settings.
7.1.2 Livelock and Starvation

Although conditional locking can be an effective deadlock-avoidance mech-
anism, it can be abused. Consider for example the beautifully symmetric
example shown in Listing 7.6. This example’s beauty hides an ugly livelock.
To see this, consider the following sequence of events:

1. Thread 1 acquires 1ock1 on line 4, then invokes do_one_thing().

2. Thread 2 acquires lock2 on line 18, then invokes do_a_third_
thing ().

3. Thread 1 attempts to acquire lock2 on line 6, but fails because
Thread 2 holds it.

4. Thread 2 attempts to acquire lockl on line 20, but fails because
Thread 1 holds it.

5. Thread 1 releases 1lock1 on line 7, then jumps to retry at line 3.
6. Thread 2 releases lock2 on line 21, and jumps to retry at line 17.

7. The livelock dance repeats from the beginning.

Listing 7.6: Abusing Conditional Locking

| void threadil(void)

2 {

3 retry:

4 spin_lock(&lockl);

5 do_one_thing() ;

6 if (!'spin_trylock(&lock2)) {
7 spin_unlock(&lockl) ;
8 goto retry;

9 }

10 do_another_thing();

1 spin_unlock(&lock2) ;

12 spin_unlock(&lockl) ;

13}

14

15 void thread2(void)

16 {

17 retry:

18 spin_lock(&lock2);

19 do_a_third_thing();

20 if (!'spin_trylock(&lock1)) {
21 spin_unlock(&lock?2) ;
2 goto retry;

23 ¥

24 do_a_fourth_thing();

25 spin_unlock(&lockl);

26 spin_unlock(&lock2) ;

27 }

[Quick Quiz 7.16: How can the livelock shown in Listing 7.6 be avoided? W J

Livelock can be thought of as an extreme form of starvation where a
group of threads starves, rather than just one of them.?

Livelock and starvation are serious issues in software transactional
memory implementations, and so the concept of contention manager has
been introduced to encapsulate these issues. In the case of locking, simple
exponential backoff can often address livelock and starvation. The idea is
to introduce exponentially increasing delays before each retry, as shown in
Listing 7.7.

3 Try not to get too hung up on the exact definitions of terms like livelock, starvation, and
unfairness. Anything that causes a group of threads to fail to make adequate forward progress
is a bug that needs to be fixed, and debating names doesn’t fix bugs.

Listing 7.7: Conditional Locking and Exponential Backoff

1
2
3
4
5

18

v
{

retry:

}

o0id threadil(void)

unsigned int wait = 1;

spin_lock(&lock1) ;

do_one_thing() ;

if (!spin_trylock(&lock2)) {
spin_unlock(&lockl) ;
sleep(wait);
wait = wait << 1;
goto retry;

}

do_another_thing();

spin_unlock(&lock2) ;

spin_unlock(&lockl) ;

void thread2(void)

{

retry:

unsigned int wait = 1;

spin_lock(&lock2) ;

do_a_third_thing();

if (!spin_trylock(&lock1)) {
spin_unlock(&lock?2) ;
sleep(wait);
wait = wait << 1;
goto retry;

T

do_a_fourth_thing();

spin_unlock(&lockl);

spin_unlock(&lock2) ;

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache

Interconnect Interconnect
~ =

Memory @’ System Interconnect }e Memory

= X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPUS5 CPUG6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 7.8: System Architecture and Lock Unfairness

[Quick Quiz 7.17: What problems can you spot in the code in Listing 7.7? H]

For better results, backoffs should be bounded, and even better high-
contention results are obtained via queued locking [And90], which is
discussed more in Section 7.3.2. Of course, best of all is to use a good parallel
design that avoids these problems by maintaining low lock contention.

7.1.3 Unfairness

Unfairness can be thought of as a less-severe form of starvation, where a
subset of threads contending for a given lock are granted the lion’s share of
the acquisitions. This can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 7.8. If CPU O releases
a lock that all the other CPUs are attempting to acquire, the interconnect
shared between CPUs 0 and 1 means that CPU 1 will have an advantage
over CPUs 2-7. Therefore CPU 1 will likely acquire the lock. If CPU 1
holds the lock long enough for CPU 0 to be requesting the lock by the time

260

Blade--. Conlacting Area

/7

Figure 7.9: Saw Kerf

CPU 1 releases it and vice versa, the lock can shuttle between CPUs 0 and 1,
bypassing CPUs 2-7.

Quick Quiz 7.18: Wouldn’t it be better just to use a good parallel design so that
lock contention was low enough to avoid unfairness? Wl

7.1.4 Inefficiency

Locks are implemented using atomic instructions and memory barriers, and
often involve cache misses. As we saw in Chapter 3, these instructions are
quite expensive, roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for locking: If you
protect a single instruction with a lock, you will increase the overhead by
a factor of one hundred. Even assuming perfect scalability, one hundred
CPUs would be required to keep up with a single CPU executing the same
code without locking.

This situation is not confined to locking. Figure 7.9 shows how this
same principle applies to the age-old activity of sawing wood. As can
be seen in the figure, sawing a board converts a small piece of that board
(the width of the saw blade) into sawdust. Of course, locks partition time
instead of sawing wood,* but just like sawing wood, using locks to partition
time wastes some of that time due to lock overhead and (worse yet) lock

4 That is, locking is temporal synchronization. Mechanisms that synchronize both
temporally and spatially are described in Chapter 9.

261

contention. One important difference is that if someone saws a board into
too-small pieces, the resulting conversion of most of that board into sawdust
will be immediately obvious. In contrast, it is not always obvious that a
given lock acquisition is wasting excessive amounts of time.

And this situation underscores the importance of the synchronization-
granularity tradeoff discussed in Section 6.3, especially Figure 6.16: Too
coarse a granularity will limit scalability, while too fine a granularity will
result in excessive synchronization overhead.

Acquiring a lock might be expensive, but once held, the CPU’s caches
are an effective performance booster, at least for large critical sections. In
addition, once a lock is held, the data protected by that lock can be accessed
by the lock holder without interference from other threads.

[Quick Quiz 7.19: How might the lock holder be interfered with? Wl]

The Rust programming language takes lock/data association a step
further by allowing the developer to make a compiler-visible association
between a lock and the data that it protects [JJKD21]. When such an
association has been made, attempts to access the data without the benefit of
the corresponding lock will result in a compile-time diagnostic. The hope is
that this will greatly reduce the frequency of this class of bugs. Of course,
this approach does not apply straightforwardly to cases where the data to be
locked is distributed throughout the nodes of some data structure or when
that which is locked is purely abstract, for example, when a small subset of
state-machine transitions is to be protected by a given lock. For this reason,
Rust allows locks to be associated with types rather than data items or even
to be associated with nothing at all. This last option permits Rust to emulate
traditional locking use cases, but is not popular among Rust developers.
Perhaps the Rust community will come up with other mechanisms tailored
to other locking use cases.

262

7.2 Types of Locks

Only locks in life are what you think you know, but
don’t. Accept your ignorance and try something new.

DENNIS VICKERS

There are a surprising number of types of locks, more than this short
chapter can possibly do justice to. The following sections discuss exclusive
locks (Section 7.2.1), reader-writer locks (Section 7.2.2), multi-role locks
(Section 7.2.3), and scoped locking (Section 7.2.4).

7.2.1 Exclusive Locks

Exclusive locks are what they say they are: Only one thread may hold the
lock at a time. The holder of such a lock thus has exclusive access to all
data protected by that lock, hence the name.

Of course, this all assumes that this lock is held across all accesses
to data purportedly protected by the lock. Although there are some tools
that can help (see for example Section 12.3.1), the ultimate responsibility
for ensuring that the lock is always acquired when needed rests with the
developer.

Quick Quiz 7.20: Does it ever make sense to have an exclusive lock acquisition
immediately followed by a release of that same lock, that is, an empty critical
section? M

It is important to note that unconditionally acquiring an exclusive lock
has two effects: (1) Waiting for all prior holders of that lock to release it and
(2) Blocking any other acquisition attempts until the lock is released. As a
result, at lock acquisition time, any concurrent acquisitions of that lock must
be partitioned into prior holders and subsequent holders. Different types of
exclusive locks use different partitioning strategies [Brall, GGL*19], for
example:

1. Strict FIFO, with acquisitions starting earlier acquiring the lock earlier.

263

2. Approximate FIFO, with acquisitions starting sufficiently earlier
acquiring the lock earlier.

3. FIFO within priority level, with higher-priority threads acquiring the
lock earlier than any lower-priority threads attempting to acquire the
lock at about the same time, but so that some FIFO ordering applies
for threads of the same priority.

4. Random, so that the new lock holder is chosen randomly from all
threads attempting acquisition, regardless of timing.

5. Unfair, so that a given acquisition might never acquire the lock (see
Section 7.1.3).

Unfortunately, locking implementations with stronger guarantees typ-
ically incur higher overhead, motivating the wide variety of locking im-
plementations in production use. For example, real-time systems often
require some degree of FIFO ordering within priority level, and much else
besides (see Section 14.3.5.1), while non-realtime systems subject to high
contention might require only enough ordering to avoid starvation, and
finally, non-realtime systems designed to avoid contention might not need
fairness at all.

7.2.2 Reader-Writer Locks

Reader-writer locks [CHP71] permit any number of readers to hold the lock
concurrently on the one hand or a single writer to hold the lock on the other.
In theory, then, reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the scalability will
depend on the reader-writer lock implementation.

The classic reader-writer lock implementation involves a set of counters
and flags that are manipulated atomically. This type of implementation
suffers from the same problem as does exclusive locking for short critical
sections: The overhead of acquiring and releasing the lock is about two
orders of magnitude greater than the overhead of a simple instruction. Of
course, if the critical section is long enough, the overhead of acquiring and
releasing the lock becomes negligible. However, because only one thread

264

at a time can be manipulating the lock, the required critical-section size
increases with the number of CPUs.

It is possible to design a reader-writer lock that is much more favorable
to readers through use of per-thread exclusive locks [HW92]. To read, a
thread acquires only its own lock. To write, a thread acquires all locks.
In the absence of writers, each reader incurs only atomic-instruction and
memory-barrier overhead, with no cache misses, which is quite good for
a locking primitive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—multiplied by the
number of threads.

In short, reader-writer locks can be quite useful in a number of situations,
but each type of implementation does have its drawbacks. The canonical use
case for reader-writer locking involves very long read-side critical sections,
preferably measured in hundreds of microseconds or even milliseconds.

As with exclusive locks, a reader-writer lock acquisition cannot complete
until all prior conflicting holders of that lock have released it. If a lock
is read-held, then read acquisitions can complete immediately, but write
acquisitions must wait until there are no longer any readers holding the
lock. If a lock is write-held, then all acquisitions must wait until the writer
releases the lock. Again as with exclusive locks, different reader-writer lock
implementations provide different degrees of FIFO ordering to readers on
the one hand and to writers on the other.

But suppose a large number of readers hold the lock and a writer is
waiting to acquire the lock. Should readers be allowed to continue to acquire
the lock, possibly starving the writer? Similarly, suppose that a writer holds
the lock and that a large number of both readers and writers are waiting
to acquire the lock. When the current writer releases the lock, should it
be given to a reader or to another writer? If it is given to a reader, how
many readers should be allowed to acquire the lock before the next writer is
permitted to do so?

There are many possible answers to these questions, with different levels
of complexity, overhead, and fairness. Different implementations might
have different costs, for example, some types of reader-writer locks incur
extremely large latencies when switching from read-holder to write-holder
mode. Here are a few possible approaches:

265

1. Reader-preference implementations unconditionally favor readers
over writers, possibly allowing write acquisitions to be indefinitely
blocked.

2. Batch-fair implementations ensure that when both readers and writers
are acquiring the lock, both have reasonable access via batching. For
example, the lock might admit five readers per CPU, then two writers,
then five more readers per CPU, and so on.

3. Writer-preference implementations unconditionally favor writers over
readers, possibly allowing read acquisitions to be indefinitely blocked.

Of course, these distinctions matter only under conditions of high lock
contention.

Please keep the waiting/blocking dual nature of locks firmly in mind.
This will be revisited in Chapter 9’s discussion of scalable high-performance
special-purpose alternatives to locking.

7.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their admission policy:
Exclusive locks allow at most one holder, while reader-writer locks permit
an arbitrary number of read-holders (but only one write-holder). There is a
very large number of possible admission policies, one of which is that of
the VAX/VMS distributed lock manager (DLM) [ST87], which is shown in
Table 7.1. Blank cells indicate compatible modes, while cells containing
“X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes of comparison,
exclusive locks use two modes (not held and held), while reader-writer locks
use three modes (not held, read held, and write held).

The first mode is null, or not held. This mode is compatible with all
other modes, which is to be expected: If a thread is not holding a lock, it
should not prevent any other thread from acquiring that lock.

The second mode is concurrent read, which is compatible with every
other mode except for exclusive. The concurrent-read mode might be used
to accumulate approximate statistics on a data structure, while permitting
updates to proceed concurrently.

266

Table 7.1: VAX/VMS Distributed Lock Manager Policy

g &

= 8§ E =9 &

s & 2 § E

T =2 2 K =

5 8 8 3 3 2

Z 5 5 35 5 %

= 2 2 2 £ 35

=

Z C 0 & & &
Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

The third mode is concurrent write, which is compatible with null,
concurrent read, and concurrent write. The concurrent-write mode might
be used to update approximate statistics, while still permitting reads and
concurrent updates to proceed concurrently.

The fourth mode is protected read, which is compatible with null,
concurrent read, and protected read. The protected-read mode might be
used to obtain a consistent snapshot of the data structure, while permitting
reads but not updates to proceed concurrently.

The fifth mode is protected write, which is compatible with null and
concurrent read. The protected-write mode might be used to carry out
updates to a data structure that could interfere with protected readers but
which could be tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compatible only with
null. The exclusive mode is used when it is necessary to exclude all other
accesses.

It is interesting to note that exclusive locks and reader-writer locks can
be emulated by the VAX/VMS DLM. Exclusive locks would use only the
null and exclusive modes, while reader-writer locks might use the null,
protected-read, and protected-write modes.

267

Quick Quiz 7.21: Is there any other way for the VAX/VMS DLM to emulate a
reader-writer lock? W

Although the VAX/VMS DLM policy has seen widespread production
use for distributed databases, it does not appear to be used much in shared-
memory applications. One possible reason for this is that the greater
communication overheads of distributed databases can hide the greater
overhead of the VAX/VMS DLM’s more-complex admission policy.

Nevertheless, the VAX/VMS DLM is an interesting illustration of just
how flexible the concepts behind locking can be. It also serves as a very
simple introduction to the locking schemes used by modern DBMSes, which
can have more than thirty locking modes, compared to VAX/VMS’s six.

7.2.4 Scoped Locking

The locking primitives discussed thus far require explicit acquisition and
release primitives, for example, spin_lock() and spin_unlock (), respec-
tively. Another approach is to use the object-oriented resource-acquisition-
is-initialization (RAII) pattern [ES90].> This pattern is often applied to auto
variables in languages like C++, where the corresponding constructor is
invoked upon entry to the object’s scope, and the corresponding destructor
is invoked upon exit from that scope. This can be applied to locking by
having the constructor acquire the lock and the destructor free it.

This approach can be quite useful, in fact in 1990 I was convinced that
it was the only type of locking that was needed.® One very nice property
of RAII locking is that you don’t need to carefully release the lock on each
and every code path that exits that scope, a property that can eliminate a
troublesome set of bugs.

However, RAII locking also has a dark side. RAII makes it quite difficult
to encapsulate lock acquisition and release, for example, in iterators. In
many iterator implementations, you would like to acquire the lock in the
iterator’s “start” function and release it in the iterator’s “stop” function.

5 Though more clearly expressed at https: //www.stroustrup.com/bs_faq2.html#
finally.

6 My later work with parallelism at Sequent Computer Systems very quickly disabused
me of this misguided notion.

https://www.stroustrup.com/bs_faq2.html#finally
https://www.stroustrup.com/bs_faq2.html#finally

268

RAII locking instead requires that the lock acquisition and release take place
in the same level of scoping, making such encapsulation difficult or even
impossible.

Strict RAII locking also prohibits overlapping critical sections, due to the
fact that scopes must nest. This prohibition makes it difficult or impossible
to express a number of useful constructs, for example, locking trees that
mediate between multiple concurrent attempts to assert an event. Of an
arbitrarily large group of concurrent attempts, only one need succeed, and
the best strategy for the remaining attempts is for them to fail as quickly and
painlessly as possible. Otherwise, lock contention becomes pathological
on large systems (where “large” is many hundreds of CPUs). Therefore,
C++17 [Smil9] has escapes from strict RAII in its unique_lock class,
which allows the scope of the critical section to be controlled to roughly the
same extent as can be achieved with explicit lock acquisition and release
primitives.

Example strict-RAIl-unfriendly data structures from Linux-kernel RCU
are shown in Figure 7.10. Here, each CPU is assigned a leaf rcu_node
structure, and each rcu_node structure has a pointer to its parent (named,
oddly enough, ->parent), up to the root rcu_node structure, which has
a NULL ->parent pointer. The number of child rcu_node structures per
parent can vary, but is typically 32 or 64. Each rcu_node structure also
contains a lock named ->fgslock.

The general approach is a tournament, where a given CPU conditionally
acquires its leaf rcu_node structure’s ->fgslock, and, if successful,
attempt to acquire that of the parent, then release that of the child. In
addition, at each level, the CPU checks a global gp_flags variable, and
if this variable indicates that some other CPU has asserted the event, the
first CPU drops out of the competition. This acquire-then-release sequence
continues until either the gp_flags variable indicates that someone else
won the tournament, one of the attempts to acquire an ->fgslock fails,
or the root rcu_node structure’s ->fqgslock has been acquired. If the
root rcu_node structure’s ->fgslock is acquired, a function named do_
force_quiescent_state() is invoked.

Simplified code to implement this is shown in Listing 7.8. The purpose
of this function is to mediate between CPUs who have concurrently detected

269

Root rcu_node

Structure
Leaf rcu_node e 0 o Leaf rcu_node
Structure 0 Structure N
o = - - —
o D S .+ |
oo —
S © 5 z - z
* Z E
E = =
o o
o € (©]
o 5
o
o

Figure 7.10: Locking Hierarchy

a need to invoke the do_force_quiescent_state() function. At any
given time, it only makes sense for one instance of do_force_quiescent_
state () to be active, so if there are multiple concurrent callers, we need at
most one of them to actually invoke do_force_quiescent_state(), and
we need the rest to (as quickly and painlessly as possible) give up and leave.

To this end, each pass through the loop spanning lines 7-15 attempts to
advance up one level in the rcu_node hierarchy. If the gp_flags variable
is already set (line 8) or if the attempt to acquire the current rcu_node
structure’s ->fqgslock is unsuccessful (line 9), then local variable ret is
set to 1. If line 10 sees that local variable rnp_o1ld is non-NULL, meaning
that we hold rnp_old’s ->fqs_lock, line 11 releases this lock (but only
after the attempt has been made to acquire the parent rcu_node structure’s
->fgslock). If line 12 sees that either line 8 or 9 saw a reason to give
up, line 13 returns to the caller. Otherwise, we must have acquired the
current rcu_node structure’s —>fgslock, so line 14 saves a pointer to this

Listing 7.8: Conditional Locking to Reduce Contention

I void force_quiescent_state(struct rcu_node *rnp_leaf)

2 {

3 int ret;

4 struct rcu_node *rnp = rnp_leaf;

5 struct rcu_node *rnp_old = NULL;

6

7 for (; rnp != NULL; rnp = rnp->parent) {
8 ret = (READ_ONCE(gp_flags)) ||

9 'raw_spin_trylock(&rnp->fgslock) ;
10 if (rnp_old '= NULL)

11 raw_spin_unlock(&rnp_old->fgslock) ;
12 if (ret)

13 return;

14 rnp_old = rnp;

15 ¥

16 if (!'READ_ONCE(gp_flags)) {

17 WRITE_ONCE(gp_flags, 1);

18 do_force_quiescent_state();

19 WRITE_ONCE(gp_flags, 0);

20 ¥

21 raw_spin_unlock(&rnp_old->fqslock) ;

2 }

structure in local variable rnp_old in preparation for the next pass through
the loop.

If control reaches line 16, we won the tournament, and now holds
the root rcu_node structure’s ->fqslock. If line 16 still sees that the
global variable gp_flags is zero, line 17 sets gp_flags to one, line 18
invokes do_force_quiescent_state(), and line 19 resets gp_£flags
back to zero. Either way, line 21 releases the root rcu_node structure’s
->fqgslock.

Quick Quiz 7.22: The code in Listing 7.8 is ridiculously complicated! Why not
conditionally acquire a single global lock? M

Quick Quiz 7.23: Wait a minute! If we “win” the tournament on line 16
of Listing 7.8, we get to do all the work of do_force_quiescent_state().
Exactly how is that a win, really? H

271

This function illustrates the not-uncommon pattern of hierarchical
locking. This pattern is difficult to implement using strict RAII locking,’
just like the iterator encapsulation noted earlier, and so explicit lock/unlock
primitives (or C++17-style unique_lock escapes) will be required for the
foreseeable future.

7.3 Locking Implementation Issues

When you translate a dream into reality, it’s never a
full implementation. It is easier to dream than to do.

SHAI AGASSI

Developers are almost always best-served by using whatever locking primi-
tives are provided by the system, for example, the POSIX pthread mutex
locks [Ope97, But97]. Nevertheless, studying sample implementations can
be helpful, as can considering the challenges posed by extreme workloads
and environments.

7.3.1 Sample Exclusive-Locking Implementation Based
on Atomic Exchange

This section reviews the implementation shown in Listing 7.9. The data
structure for this lock is just an int, as shown on line 1, but could be any
integral type. The initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

Quick Quiz 7.24: Why not rely on the C language’s default initialization of zero
instead of using the explicit initializer shown on line 2 of Listing 7.9? W

Lock acquisition is carried out by the xchg_lock () function shown on
lines 4—10. This function uses a nested loop, with the outer loop repeatedly

7 Which is why many RAII locking implementations provide a way to leak the lock out
of the scope that it was acquired and into the scope in which it is to be released. However,
some object must mediate the scope leaking, which can add complexity compared to non-RAII
explicit locking primitives.

272

Listing 7.9: Sample Lock Based on Atomic Exchange
1 typedef int xchglock_t;

2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0

3

4 void xchg_lock(xchglock_t *xp)

s {

6 while (xchg(xp, 1) == 1) {
7 while (READ_ONCE(*xp) == 1)
8 continue;
9 ¥

10 ¥

11

12 void xchg_unlock(xchglock_t *xp)
13 {

14 (void)xchg(xp, 0);

15 ¥

atomically exchanging the value of the lock with the value one (meaning
“locked”). If the old value was already the value one (in other words,
someone else already holds the lock), then the inner loop (lines 7-8) spins
until the lock is available, at which point the outer loop makes another
attempt to acquire the lock.

Quick Quiz 7.25: Why bother with the inner loop on lines 7-8 of Listing 7.9?
Why not simply repeatedly do the atomic exchange operation on line 6? H

Lock release is carried out by the xchg_unlock () function shown on
lines 12—15. Line 14 atomically exchanges the value zero (“unlocked”) into
the lock, thus marking it as having been released.

Quick Quiz 7.26: Why not simply store zero into the lock word on line 14 of
Listing 7.97 W

This lock is a simple example of a test-and-set lock [SR84], but very
similar mechanisms have been used extensively as pure spinlocks in produc-
tion.

7.3.2 Other Exclusive-Locking Implementations

There are a great many other possible implementations of locking based
on atomic instructions, many of which are reviewed in the classic paper by

273

Mellor-Crummey and Scott [MCS91]. These implementations represent
different points in a multi-dimensional design tradeoff [GGL*19, Guil8,
McK96b]. For example, the atomic-exchange-based test-and-set lock
presented in the previous section works well when contention is low and
has the advantage of small memory footprint. It avoids giving the lock to
threads that cannot use it, but as a result can suffer from unfairness or even
starvation at high contention levels.

In contrast, ticket lock [MCS91], which was once used in the Linux ker-
nel, avoids unfairness at high contention levels. However, as a consequence
of its strict FIFO discipline, it can grant the lock to a thread that is currently
unable to use it, perhaps due to that thread being preempted or interrupted.
On the other hand, it is important to avoid getting too worried about the
possibility of preemption and interruption. After all, in many cases, this
preemption and interruption could just as well happen just after the lock
was acquired.®

All locking implementations where waiters spin on a single memory
location, including both test-and-set locks and ticket locks, suffer from
performance problems at high contention levels. The problem is that the
thread releasing the lock must update the value of the corresponding memory
location. At low contention, this is not a problem: The corresponding cache
line is very likely still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread attempting to acquire
the lock will have a read-only copy of the cache line, and the lock holder
will need to invalidate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and threads there are, the
greater the overhead incurred when releasing the lock under conditions of
high contention.

This negative scalability has motivated a number of different queued-lock
implementations [And90, GT90, MCS91, WKS94, Cra93, MLH94, TS93],
some of which are used in recent versions of the Linux kernel [Corl4b].
Queued locks avoid high cache-invalidation overhead by assigning each

8 Besides, the best way of handling high lock contention is to avoid it in the first place!
There are nevertheless some situations where high lock contention is the lesser of the available
evils, and in any case, studying schemes that deal with high levels of contention is a good
mental exercise.

274

thread a queue element. These queue elements are linked together into a
queue that governs the order that the lock will be granted to the waiting
threads. The key point is that each thread spins on its own queue element,
so that the lock holder need only invalidate the first element from the next
thread’s CPU’s cache. This arrangement greatly reduces the overhead of
lock handoff at high levels of contention.

More recent queued-lock implementations also take the system’s architec-
ture into account, preferentially granting locks locally, while also taking steps
to avoid starvation [SSVM02, RH03, RH02, IMRR02, MCMO02]. Many of
these can be thought of as analogous to the elevator algorithms traditionally
used in scheduling disk I/O. Dice et al. discuss use of local and global locks
in order to transform any architecture-oblivious lock into a local/global
locking scheme that optimizes for the system’s structure by providing (for
example) per-socket locks along with a global lock [DMS12b, DMS12c].

Unfortunately, the same scheduling logic that improves the efficiency
of queued locks at high contention also increases their overhead at low
contention. Beng-Hong Lim and Anant Agarwal therefore combined a
simple test-and-set lock with a queued lock, using the test-and-set lock at
low levels of contention and switching to the queued lock at high levels of
contention [LLA94], thus getting low overhead at low levels of contention and
getting fairness and high throughput at high levels of contention. Browning
et al. took a similar approach, but avoided the use of a separate flag, so that
the test-and-set fast path uses the same sequence of instructions that would
be used in a simple test-and-set lock [BMMMOS5]. This approach has been
used in production.

Another issue that arises at high levels of contention is when the lock
holder is delayed, especially when the delay is due to preemption, which can
result in priority inversion, where a low-priority thread holds a lock, but is
preempted by a medium priority CPU-bound thread, which results in a high-
priority process blocking while attempting to acquire the lock. The result is
that the CPU-bound medium-priority process is preventing the high-priority
process from running. One solution is priority inheritance [LR80], which
has been widely used for real-time computing [SRL90, CorO6b], despite
some lingering controversy over this practice [Yod04a, Loc02].

275

Another way to avoid priority inversion is to prevent preemption while
a lock is held. Because preventing preemption while locks are held also
improves throughput, most proprietary UNIX kernels offer some form of
scheduler-conscious synchronization mechanism [KWS97], largely due
to the efforts of a certain sizable database vendor. These mechanisms
usually take the form of a hint that preemption should be avoided in a given
region of code, with this hint typically being placed in a machine register.
These hints frequently take the form of a bit set in a particular machine
register, which enables extremely low per-lock-acquisition overhead for these
mechanisms. In contrast, Linux avoids these hints. Instead, the Linux kernel
community’s response to requests for scheduler-conscious synchronization
was a mechanism called futexes [FRK02, Mol06, Ros06, Drel1].

Interestingly enough, atomic instructions are not strictly needed to
implement locks [Dij65, Lam74]. An excellent exposition of the issues
surrounding locking implementations based on simple loads and stores may
be found in Herlihy’s and Shavit’s textbook [HSO08, HSLS20]. The main
point echoed here is that such implementations currently have little practical
application, although a careful study of them can be both entertaining and
enlightening. Nevertheless, with one exception described below, such study
is left as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-based mechanism
in which a token circulates among the CPUs. When the token reaches a
given CPU, it has exclusive access to anything protected by that token. There
are any number of schemes that may be used to implement the token-based
mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for all but one CPU.
When a CPU’s flag is non-zero, it holds the token. When it finishes
with the token, it zeroes its flag and sets the flag of the next CPU to
one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to the corresponding
CPU’s number, which we assume to range from zero to N — 1, where
N is the number of CPUs in the system. When a CPU’s counter is
greater than that of the next CPU (taking counter wrap into account),
the first CPU holds the token. When it is finished with the token,

276

it sets the next CPU’s counter to a value one greater than its own
counter.

Quick Quiz 7.27: How can you tell if one counter is greater than another, while
accounting for counter wrap? W

[Quick Quiz 7.28: Which is better, the counter approach or the flag approach? .J

This lock is unusual in that a given CPU cannot necessarily acquire it
immediately, even if no other CPU is using it at the moment. Instead, the
CPU must wait until the token comes around to it. This is useful in cases
where CPUs need periodic access to the critical section, but can tolerate
variances in token-circulation rate. Gamsa et al. [GKAS99] used it to
implement a variant of read-copy update (see Section 9.5), but it could also
be used to protect periodic per-CPU operations such as flushing per-CPU
caches used by memory allocators [MS93], garbage-collecting per-CPU
data structures, or flushing per-CPU data to shared storage (or to mass
storage, for that matter).

The Linux kernel now uses queued spinlocks [Corl4b], but because
of the complexity of implementations that provide good performance
across the range of contention levels, the path has not always been
smooth [Marl8, Deal8]. As increasing numbers of people gain famil-
iarity with parallel hardware and parallelize increasing amounts of code,
we can continue to expect more special-purpose locking primitives to ap-
pear, see for example Guerraoui et al. [GGL*19, Guil8]. Nevertheless,
you should carefully consider this important safety tip: Use the standard
synchronization primitives whenever humanly possible. The big advantage
of the standard synchronization primitives over roll-your-own efforts is that
the standard primitives are typically much less bug-prone.’

9 And yes, I have done at least my share of roll-your-own synchronization primitives.
However, you will notice that my hair is much greyer than it was before I started doing that
sort of work. Coincidence? Maybe. But are you really willing to risk your own hair turning
prematurely grey?

271

Listing 7.10: Per-Element Locking Without Existence Guarantees (Buggy!)

I int delete(int key)

2 {

3 int b;

4 struct element *p;

5

6 b = hashfunction(key);
7 p = hashtable[b];

8 if (p == NULL || p->key != key)
9 return O;

10 spin_lock(&p->lock);

1 hashtable[b] = NULL;
12 spin_unlock(&p->lock) ;
13 kfree(p);

14 return 1;

15 }

7.4 Lock-Based Existence Guarantees

Existence precedes and rules essence.

JEAN-PAUL SARTRE

A key challenge in parallel programming is to provide existence guaran-
tees [GKAS99], so that attempts to access a given object can rely on that
object being in existence throughout a given access attempt.

In some cases, existence guarantees are implicit:

1. Global variables and static local variables in the base module will
exist as long as the application is running.

2. Global variables and static local variables in a loaded module will
exist as long as that module remains loaded.

3. A module will remain loaded as long as at least one of its functions
has an active instance.

4. A given function instance’s on-stack variables will exist until that
instance returns.

278

5. If you are executing within a given function or have been called
(directly or indirectly) from that function, then the given function has
an active instance.

These implicit existence guarantees are straightforward, though bugs
involving implicit existence guarantees really can happen.

Quick Quiz 7.29: How can relying on implicit existence guarantees result in a
bug? M

But the more interesting—and troublesome—guarantee involves heap
memory: A dynamically allocated data structure will exist until it is freed.
The problem to be solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to do this is with
explicit guarantees, such as locking. If a given structure may only be freed
while holding a given lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock itself. One
straightforward way to guarantee the lock’s existence is to place the lock
in a global variable, but global locking has the disadvantage of limiting
scalability. One way of providing scalability that improves as the size of the
data structure increases is to place a lock in each element of the structure.
Unfortunately, putting the lock that is to protect a data element in the data
element itself is subject to subtle race conditions, as shown in Listing 7.10.

Quick Quiz 7.30: What if the element we need to delete is not the first element
of the list on line 8 of Listing 7.10? M

To see one of these race conditions, consider the following sequence of
events:

1. Thread O invokes delete(0), and reaches line 10 of the listing,
acquiring the lock.

2. Thread 1 concurrently invokes delete(0), reaching line 10, but
spins on the lock because Thread 0 holds it.

3. Thread O executes lines 11-14, removing the element from the
hashtable, releasing the lock, and then freeing the element.

279

Listing 7.11: Per-Element Locking With Lock-Based Existence Guarantees

I int delete(int key)

2 {

3 int b;

4 struct element *p;

5 spinlock_t *sp;

6

7 b = hashfunction(key) ;

8 sp = &locktable[b];

9 spin_lock(sp);

10 p = hashtable[b];

1 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;

14 }

15 hashtable[b] = NULL;

16 spin_unlock(sp) ;

17 kfree(p);

18 return 1;

19 ¥

4. Thread 0 continues execution, and allocates memory, getting the exact
block of memory that it just freed.

5. Thread 0 then initializes this block of memory as some other type of
structure.

6. Thread 1’s spin_lock() operation fails due to the fact that what it
believes to be p->1lock is no longer a spinlock.

Because there is no existence guarantee, the identity of the data element
can change while a thread is attempting to acquire that element’s lock on
line 10!

One way to fix this example is to use a hashed set of global locks, so that
each hash bucket has its own lock, as shown in Listing 7.11. This approach
allows acquiring the proper lock (on line 9) before gaining a pointer to the
data element (on line 10). Although this approach works quite well for
elements contained in a single partitionable data structure such as the hash
table shown in the listing, it can be problematic if a given data element
can be a member of multiple hash tables or given more-complex data
structures such as trees or graphs. Not only can these problems be solved,
but the solutions also form the basis of lock-based software transactional

280

memory implementations [ST95, DSS06]. However, Chapter 9 describes
simpler—and faster—ways of providing existence guarantees.

7.5 Locking: Hero or Villain?

You either die a hero or you live long enough to see
yourself become the villain.

AARON ECKHART As HARVEY DENT

As is often the case in real life, locking can be either hero or villain,
depending on how it is used and on the problem at hand. In my experience,
those writing whole applications are happy with locking, those writing
parallel libraries are less happy, and those parallelizing existing sequential
libraries are extremely unhappy. The following sections discuss some
reasons for these differences in viewpoints.

7.5.1 Locking For Applications: Hero!

When writing an entire application (or entire kernel), developers have full
control of the design, including the synchronization design. Assuming that
the design makes good use of partitioning, as discussed in Chapter 6, locking
can be an extremely effective synchronization mechanism, as demonstrated
by the heavy use of locking in production-quality parallel software.

Nevertheless, although such software usually bases most of its synchro-
nization design on locking, such software also almost always makes use of
other synchronization mechanisms, including special counting algorithms
(Chapter 5), data ownership (Chapter 8), reference counting (Section 9.2),
hazard pointers (Section 9.3), sequence locking (Section 9.4), and read-copy
update (Section 9.5). In addition, practitioners use tools for deadlock de-
tection [Cor0O6a], lock acquisition/release balancing [Cor04b], cache-miss
analysis [Thel1], hardware-counter-based profiling [EGMdB11, Thel2b],
and many more besides.

281

Given careful design, use of a good combination of synchronization
mechanisms, and good tooling, locking works quite well for applications
and kernels.

7.5.2 Locking For Parallel Libraries: Just Another Tool

Unlike applications and kernels, the designer of a library cannot know the
locking design of the code that the library will be interacting with. In
fact, that code might not be written for years to come. Library designers
therefore have less control and must exercise more care when laying out
their synchronization design.

Deadlock is of course of particular concern, and the techniques discussed
in Section 7.1.1 need to be applied. One popular deadlock-avoidance strategy
is therefore to ensure that the library’s locks are independent subtrees of the
enclosing program’s locking hierarchy. However, this can be harder than it
looks.

One complication was discussed in Section 7.1.1.2, namely when library
functions call into application code, with gsort ()’s comparison-function
argument being a case in point. Another complication is the interaction
with signal handlers. If an application signal handler is invoked from a
signal received within the library function, deadlock can ensue just as surely
as if the library function had called the signal handler directly. A final
complication occurs for those library functions that can be used between
a fork()/exec () pair, for example, due to use of the system() function.
In this case, if your library function was holding a lock at the time of the
fork(), then the child process will begin life with that lock held. Because
the thread that will release the lock is running in the parent but not the child,
if the child calls your library function, deadlock will ensue.

The following strategies may be used to avoid deadlock problems in
these cases:

1. Don’t use either callbacks or signals.
2. Don’t acquire locks from within callbacks or signal handlers.

3. Let the caller control synchronization.

282

4. Parameterize the library API to delegate locking to caller.
5. Explicitly avoid callback deadlocks.
6. Explicitly avoid signal-handler deadlocks.

7. Avoid invoking fork ().

Each of these strategies is discussed in one of the following sections.

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application as a whole avoids
signals, then any locks acquired by that library function will be leaves of
the locking-hierarchy tree. This arrangement avoids deadlock, as discussed
in Section 7.1.1.1. Although this strategy works extremely well where
it applies, there are some applications that must use signal handlers, and
there are some library functions (such as the gsort () function discussed
in Section 7.1.1.2) that require callbacks.

The strategy described in the next section can often be used in these
cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Handlers

If neither callbacks nor signal handlers acquire locks, then they cannot be
involved in deadlock cycles, which allows straightforward locking hierarchies
to once again consider library functions to be leaves on the locking-hierarchy
tree. This strategy works very well for most uses of gsort, whose callbacks
usually simply compare the two values passed in to them. This strategy also
works wonderfully for many signal handlers, especially given that acquiring
locks from within signal handlers is generally frowned upon [Gro01],'° but
can fail if the application needs to manipulate complex data structures from
a signal handler.

Here are some ways to avoid acquiring locks in signal handlers even if
complex data structures must be manipulated:

10 But the standard’s words do not stop clever coders from creating their own home-brew
locking primitives from atomic operations.

283

1. Use simple data structures based on non-blocking synchronization,
as will be discussed in Section 14.2.1.

2. If the data structures are too complex for reasonable use of non-
blocking synchronization, create a queue that allows non-blocking
enqueue operations. In the signal handler, instead of manipulating
the complex data structure, add an element to the queue describing
the required change. A separate thread can then remove elements
from the queue and carry out the required changes using normal
locking. There are a number of readily available implementations of
concurrent queues [KLP12, Des09b, MS96].

This strategy should be enforced with occasional manual or (preferably)
automated inspections of callbacks and signal handlers. When carrying
out these inspections, be wary of clever coders who might have (unwisely)
created home-brew locks from atomic operations.

7.5.2.3 Caller Controls Synchronization

Letting the caller control synchronization works extremely well when the
library functions are operating on independent caller-visible instances of a
data structure, each of which may be synchronized separately. For example,
if the library functions operate on a search tree, and if the application needs a
large number of independent search trees, then the application can associate
a lock with each tree. The application then acquires and releases locks as
needed, so that the library need not be aware of parallelism at all. Instead,
the application controls the parallelism, so that locking can work very well,
as was discussed in Section 7.5.1.

However, this strategy fails if the library implements a data structure that
requires internal concurrency, for example, a hash table or a parallel sort.
In this case, the library absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API to specify which
locks to acquire, how to acquire and release them, or both. This strategy
allows the application to take on the global task of avoiding deadlock by

284

specifying which locks to acquire (by passing in pointers to the locks in
question) and how to acquire them (by passing in pointers to lock acquisition
and release functions), but also allows a given library function to control
its own concurrency by deciding where the locks should be acquired and
released.

In particular, this strategy allows the lock acquisition and release
functions to block signals as needed without the library code needing to
be concerned with which signals need to be blocked by which locks. The
separation of concerns used by this strategy can be quite effective, but in
some cases the strategies laid out in the following sections can work better.

That said, passing explicit pointers to locks to external APIs must be
very carefully considered, as discussed in Section 7.1.1.5. Although this
practice is sometimes the right thing to do, you should do yourself a favor
by looking into alternative designs first.

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Section 7.1.1.2: “Release
all locks before invoking unknown code.” This is usually the best approach
because it allows the application to ignore the library’s locking hierarchy:
The library remains a leaf or isolated subtree of the application’s overall
locking hierarchy.

In cases where it is not possible to release all locks before invoking
unknown code, the layered locking hierarchies described in Section 7.1.1.3
can work well. For example, if the unknown code is a signal handler, this
implies that the library function block signals across all lock acquisitions,
which can be complex and slow. Therefore, in cases where signal handlers
(probably unwisely) acquire locks, the strategies in the next section may
prove helpful.

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Suppose that a given library function is known to acquire locks, but does not
block signals. Suppose further that it is necessary to invoke that function
both from within and outside of a signal handler, and that it is not permissible
to modify this library function. Of course, if no special action is taken, then

285

if a signal arrives while that library function is holding its lock, deadlock
can occur when the signal handler invokes that same library function, which
in turn attempts to re-acquire that same lock.

Such deadlocks can be avoided as follows:

1. If the application invokes the library function from within a signal
handler, then that signal must be blocked every time that the library
function is invoked from outside of a signal handler.

2. If the application invokes the library function while holding a lock
acquired within a given signal handler, then that signal must be
blocked every time that the library function is called outside of a
signal handler.

These rules can be enforced by using tools similar to the Linux kernel’s
lockdep lock dependency checker [Cor0O6a]. One of the great strengths of
lockdep is that it is not fooled by human intuition [Ros11].

7.5.2.77 Library Functions Used Between fork () and exec()

As noted earlier, if a thread executing a library function is holding a lock at
the time that some other thread invokes fork (), the fact that the parent’s
memory is copied to create the child means that this lock will be born held
in the child’s context. The thread that will release this lock is running in the
parent, but not in the child, which means that although the parent’s copy
of this lock will be released, the child’s copy never will be. Therefore, any
attempt on the part of the child to invoke that same library function (thus
acquiring that same lock) will result in deadlock.

A pragmatic and straightforward way of solving this problem is to
fork() a child process while the process is still single-threaded, and have
this child process remain single-threaded. Requests to create further child
processes can then be communicated to this initial child process, which can
safely carry out any needed fork() and exec () system calls on behalf of
its multi-threaded parent process.

Another rather less pragmatic and straightforward solution to this
problem is to have the library function check to see if the owner of the lock

286

is still running, and if not, “breaking” the lock by re-initializing and then
acquiring it. However, this approach has a couple of vulnerabilities:

1. The data structures protected by that lock are likely to be in some
intermediate state, so that naively breaking the lock might result in
arbitrary memory corruption.

2. If the child creates additional threads, two threads might break the
lock concurrently, with the result that both threads believe they own
the lock. This could again result in arbitrary memory corruption.

The pthread_atfork() function is provided to help deal with these
situations. The idea is to register a triplet of functions, one to be called
by the parent before the fork(), one to be called by the parent after the
fork(), and one to be called by the child after the fork(). Appropriate
cleanups can then be carried out at these three points.

Be warned, however, that coding of pthread_atfork() handlers is
quite subtle in general. The cases where pthread_atfork() works best
are cases where the data structure in question can simply be re-initialized
by the child. Which might be one reason why the POSIX standard forbids
use of any non-async-signal-safe functions between the fork() and the
exec (), which rules out acquisition of locks during that time.

Other alternatives to fork()/exec() include posix_spawn() and
io_uring_spawn() [Tri22, Edg22].

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the library’s API must
include a clear description of that strategy and how the caller should interact
with that strategy. In short, constructing parallel libraries using locking is
possible, but not as easy as constructing a parallel application.

7.5.3 Locking For Parallelizing Sequential Libraries: Vil-
lain!

With the advent of readily available low-cost multicore systems, a common
task is parallelizing an existing library that was designed with only single-

287

threaded use in mind. This all-too-common disregard for parallelism can
result in a library API that is severely flawed from a parallel-programming
viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.
2. Callback functions requiring locking.

3. Object-oriented spaghetti code.

These flaws and the consequences for locking are discussed in the
following sections.

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-table implementation.
It is easy and fast to maintain an exact count of the total number of items
in the hash table, and also easy and fast to return this exact count on each
addition and deletion operation. So why not?

One reason is that exact counters do not perform or scale well on
multicore systems, as was seen in Chapter 5. As a result, the parallelized
implementation of the hash table will not perform or scale well.

So what can be done about this? One approach is to return an approximate
count, using one of the algorithms from Chapter 5. Another approach is to
drop the element count altogether.

Either way, it will be necessary to inspect uses of the hash table to see
why the addition and deletion operations need the exact count. Here are a
few possibilities:

1. Determining when to resize the hash table. In this case, an approximate
count should work quite well. It might also be useful to trigger the
resizing operation from the length of the longest chain, which can be
computed and maintained in a nicely partitioned per-chain manner.

2. Producing an estimate of the time required to traverse the entire hash
table. An approximate count works well in this case, also.

288

3. For diagnostic purposes, for example, to check for items being lost
when transferring them to and from the hash table. This clearly
requires an exact count. However, given that this usage is diagnostic
in nature, it might suffice to maintain the lengths of the hash chains,
then to infrequently sum them up while locking out addition and
deletion operations.

It turns out that there is now a strong theoretical basis for some of the
constraints that performance and scalability place on a parallel library’s
APIs [AGH*11a, AGH*11b, McK11b]. Anyone designing a parallel library
needs to pay close attention to those constraints.

Although it is all too easy to blame locking for what are really problems
due to a concurrency-unfriendly API, doing so is not helpful. On the other
hand, one has little choice but to sympathize with the hapless developer who
made this choice in (say) 1985. It would have been a rare and courageous
developer to anticipate the need for parallelism at that time, and it would
have required an even more rare combination of brilliance and luck to
actually arrive at a good parallel-friendly APIL.

Times change, and code must change with them. That said, there might
be a huge number of users of a popular library, in which case an incompatible
change to the API would be quite foolish. Adding a parallel-friendly API
to complement the existing heavily used sequential-only API is usually the
best course of action.

Nevertheless, human nature being what it is, we can expect our hapless
developer to be more likely to complain about locking than about his or her
own poor (though understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisciplined use of
callbacks can result in locking woes. These sections also described how to
design your library function to avoid these problems, but it is unrealistic to
expect a 1990s programmer with no experience in parallel programming to
have followed such a design. Therefore, someone attempting to parallelize
an existing callback-heavy single-threaded library will likely have many
opportunities to curse locking’s villainy.

289

If there are a very large number of uses of a callback-heavy library, it
may be wise to again add a parallel-friendly API to the library in order
to allow existing users to convert their code incrementally. Alternatively,
some advocate use of transactional memory in these cases. While the jury
is still out on transactional memory, Section 17.2 discusses its strengths and
weaknesses. It is important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the hardware transactional
memory implementation provides forward-progress guarantees, which few
do. Other alternatives that appear to be quite practical (if less heavily hyped)
include the methods discussed in Sections 7.1.1.6 and 7.1.1.7, as well as
those that will be discussed in Chapters 8 and 9.

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime in the 1980s or
1990s, and as a result there is a huge amount of single-threaded object-
oriented code in production. Although object orientation can be a valuable
software technique, undisciplined use of objects can easily result in object-
oriented spaghetti code. In object-oriented spaghetti code, control flits from
object to object in an essentially random manner, making the code hard to
understand and even harder, and perhaps impossible, to accommodate a
locking hierarchy.

Although many might argue that such code should be cleaned up in
any case, such things are much easier to say than to do. If you are tasked
with parallelizing such a beast, you can reduce the number of opportunities
to curse locking by using the techniques described in Sections 7.1.1.6
and 7.1.1.7, as well as those that will be discussed in Chapters 8 and 9. This
situation appears to be the use case that inspired transactional memory, so
it might be worth a try as well. That said, the choice of synchronization
mechanism should be made in light of the hardware habits discussed in
Chapter 3. After all, if the overhead of the synchronization mechanism is
orders of magnitude more than that of the operations being protected, the
results are not going to be pretty.

And that leads to a question well worth asking in these situations: Should
the code remain sequential? For example, perhaps parallelism should be
introduced at the process level rather than the thread level. In general,

290

if a task is proving extremely hard, it is worth some time spent thinking
about not only alternative ways to accomplish that particular task, but also
alternative tasks that might better solve the problem at hand.

7.6 Summary

Achievement unlocked.

UNKNOWN

Locking is perhaps the most widely used and most generally useful synchro-
nization tool. However, it works best when designed into an application
or library from the beginning. Given the large quantity of pre-existing
single-threaded code that might need to one day run in parallel, locking
should therefore not be the only tool in your parallel-programming toolbox.
The next few chapters will discuss other tools, and how they can best be
used in concert with locking and with each other.

291

Chapter 8
Data Ownership

It is mine, I tell you. My own. My precious. Yes, my
precious.

GOLLUM IN THE FELLOWSHIP OF THE RING,).R.R. TOLKIEN

One of the simplest ways to avoid the synchronization overhead that comes
with locking is to parcel the data out among the threads (or, in the case of
kernels, CPUs) so that a given piece of data is accessed and modified by
only one of the threads. Interestingly enough, data ownership covers each
of the “big three” parallel design techniques: It partitions over threads (or
CPUs, as the case may be), it batches all local operations, and its elimination
of synchronization operations is weakening carried to its logical extreme. It
should therefore be no surprise that data ownership is heavily used: Even
novices use it almost instinctively. In fact, it is so heavily used that this
chapter will not introduce any new examples, but will instead refer back to
those of previous chapters.

Quick Quiz 8.1: What form of data ownership is extremely difficult to avoid
when creating shared-memory parallel programs (for example, using pthreads) in
CorC++? W

There are a number of approaches to data ownership. Section 8.1
presents the logical extreme in data ownership, where each thread has its
own private address space. Section 8.2 looks at the opposite extreme, where
the data is shared, but different threads own different access rights to the
data. Section 8.3 describes function shipping, which is a way of allowing
other threads to have indirect access to data owned by a particular thread.
Section 8.4 describes how designated threads can be assigned ownership of
a specified function and the related data. Section 8.5 discusses improving
performance by transforming algorithms with shared data to instead use

292

data ownership. Finally, Section 8.6 lists a few software environments that
feature data ownership as a first-class citizen.

8.1 Multiple Processes

A man’s home is his castle

ANCIENT LAWS OF ENGLAND

Section 4.1 introduced the following example:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[S

This example runs two instances of the compute_it program in parallel,
as separate processes that do not share memory. Therefore, all data in a
given process is owned by that process, so that almost the entirety of data
in the above example is owned. This approach almost entirely eliminates
synchronization overhead. The resulting combination of extreme simplicity
and optimal performance is obviously quite attractive.

Quick Quiz 8.2: What synchronization remains in the example shown in
Section 8.1? M

‘ Quick Quiz 8.3: Is there any shared data in the example shown in Section 8.1?
|

This same pattern can be written in C as well as in sh, as illustrated by
Listings 4.1 and 4.2.

It bears repeating that these trivial forms of parallelism are not in any
way cheating or ducking responsibility, but are rather simple and elegant
ways to make your code run faster. It is fast, scales well, is easy to program,
easy to maintain, and gets the job done. In addition, taking this approach
(where applicable) allows the developer more time to focus on other things
whether these things might involve applying sophisticated single-threaded

293

optimizations to compute_it on the one hand, or applying sophisticated
parallel-programming patterns to portions of the code where this approach
is inapplicable. What is not to like?

The next section discusses the use of data ownership in shared-memory
parallel programs.

8.2 Partial Data Ownership and pthreads

Give thy mind more to what thou hast than to what
thou hast not.

MARCUS AURELIUS ANTONINUS

Concurrent counting (see Chapter 5) uses data ownership heavily, but adds
a twist. Threads are not allowed to modify data owned by other threads, but
they are permitted to read it. In short, the use of shared memory allows
more nuanced notions of ownership and access rights.

For example, consider the per-thread statistical counter implementation
shown in Listing 5.4 on page 127. Here, inc_count () updates only
the corresponding thread’s instance of counter, while read_count ()
accesses, but does not modify, all threads’ instances of counter.

Quick Quiz 8.4: Does it ever make sense to have partial data ownership where
each thread reads only its own instance of a per-thread variable, but writes to other
threads’ instances? W

Partial data ownership is also common within the Linux kernel. For
example, a given CPU might be permitted to read a given set of its own
per-CPU variables only with interrupts disabled, another CPU might be
permitted to read that same set of the first CPU’s per-CPU variables only
when holding the corresponding per-CPU lock. Then that given CPU would
be permitted to update this set of its own per-CPU variables if it both has
interrupts disabled and holds its per-CPU lock. This arrangement can be
thought of as a reader-writer lock that allows each CPU very low-overhead
access to its own set of per-CPU variables. There are a great many variations
on this theme.

294

For its own part, pure data ownership is also both common and useful, for
example, the per-thread memory-allocator caches discussed in Section 6.4.3
starting on page 212. In this algorithm, each thread’s cache is completely
private to that thread.

8.3 Function Shipping

If the mountain will not come to Muhammad, then
Muhammad must go to the mountain.

Essays, FRANCIS BACON

The previous section described a weak form of data ownership where threads
reached out to other threads’ data. This can be thought of as bringing the
data to the functions that need it. An alternative approach is to send the
functions to the data.

Such an approach is illustrated in Section 5.4.3 beginning on page 153, in
particular the flush_local_count_sig() and flush_local_count ()
functions in Listing 5.18 on page 157.

The flush_local_count_sig() function is a signal handler that acts
as the shipped function. The pthread_kil1 () function in flush_local_
count () sends the signal—shipping the function—and then waits until
the shipped function executes. This shipped function has the not-unusual
added complication of needing to interact with any concurrently executing
add_count () or sub_count () functions (see Listing 5.19 on page 158
and Listing 5.20 on page 159).

Quick Quiz 8.5: What mechanisms other than POSIX signals may be used for
function shipping? W

295

8.4 Designated Thread

Let a man practice the profession which he best
knows.

CICERO

The earlier sections describe ways of allowing each thread to keep its own
copy or its own portion of the data. In contrast, this section describes a
functional-decomposition approach, where a special designated thread owns
the rights to the data that is required to do its job. The eventually consistent
counter implementation described in Section 5.2.4 provides an example.
This implementation has a designated thread that runs the eventual ()
function shown on lines 17-32 of Listing 5.5. This eventual () thread
periodically pulls the per-thread counts into the global counter, so that
accesses to the global counter will, as the name says, eventually converge
on the actual value.

Quick Quiz 8.6: But none of the data in the eventual () function shown on
lines 17-32 of Listing 5.5 is actually owned by the eventual () thread! In just
what way is this data ownership??? W

8.5 Privatization

There is, of course, a difference between what a man
seizes and what he really possesses.

PEARL S. Buck

One way of improving the performance and scalability of a shared-memory
parallel program is to transform it so as to convert shared data to private
data that is owned by a particular thread.

An excellent example of this is shown in the answer to one of the Quick
Quizzes in Section 6.1.1, which uses privatization to produce a solution
to the Dining Philosophers problem with much better performance and

296

scalability than that of the standard textbook solution. The original problem
has five philosophers sitting around the table with one fork between each
adjacent pair of philosophers, which permits at most two philosophers to
eat concurrently.

We can trivially privatize this problem by providing an additional five
forks, so that each philosopher has his or her own private pair of forks. This
allows all five philosophers to eat concurrently, and also offers a considerable
reduction in the spread of certain types of disease.

In other cases, privatization imposes costs. For example, consider the
simple limit counter shown in Listing 5.7 on page 137. This is an example of
an algorithm where threads can read each others’ data, but are only permitted
to update their own data. A quick review of the algorithm shows that the
only cross-thread accesses are in the summation loop in read_count (). If
this loop is eliminated, we move to the more-efficient pure data ownership,
but at the cost of a less-accurate result from read_count ().

Quick Quiz 8.7: Is it possible to obtain greater accuracy while still maintaining
full privacy of the per-thread data? W

Partial privatization is also possible, with some synchronization require-
ments, but less than in the fully shared case. Some partial-privatization
possibilities were explored in Section 4.3.4.4. Chapter 9 will introduce a
temporal component to data ownership by providing ways of safely taking
public data structures private.

In short, privatization is a powerful tool in the parallel programmer’s
toolbox, but it must nevertheless be used with care. Just like every other
synchronization primitive, it has the potential to increase complexity while
decreasing performance and scalability.

8.6

297

Other Uses of Data Ownership

Everything comes to us that belongs to us if we
create the capacity to receive it.

RABINDRANATH TAGORE

Data ownership works best when the data can be partitioned so that there is
little or no need for cross thread access or update. Fortunately, this situation
is reasonably common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1.

S A

All message-passing environments, such as MPI [MPI0O8] and
BOINC [UniO8a].

Map-reduce [JacOS8].

Client-server systems, including RPC, web services, and pretty much
any system with a back-end database server.

Shared-nothing database systems.
Fork-join systems with separate per-process address spaces.
Process-based parallelism, such as the Erlang language.

Private variables, for example, C-language on-stack auto variables, in
threaded environments.

Many parallel linear-algebra algorithms, especially those well-suited
for GPGPUs.!

Operating-system kernels adapted for networking, where each con-
nection (also called flow [DKS89, Zha89, McK90]) is assigned to
a specific thread. One recent example of this approach is the IX

! But note that a great many other classes of applications have also been ported to
GPGPUs [Matl7, AMD20, NVil7a, NVil7b].

298

operating system [BPP*16]. IX does have some shared data structures,
which use synchronization mechanisms to be described in Section 9.5.

Data ownership is perhaps the most underappreciated synchronization
mechanism in existence. When used properly, it delivers unrivaled simplicity,
performance, and scalability. Perhaps its simplicity costs it the respect that
it deserves. Hopefully a greater appreciation for the subtlety and power of
data ownership will lead to greater level of respect, to say nothing of leading
to greater performance and scalability coupled with reduced complexity.

299

Chapter 9
Deferred Processing

All things come to those who wait.

VIOLET FANE

The strategy of deferring work goes back before the dawn of recorded history.
It has occasionally been derided as procrastination or even as sheer laziness.
However, in the last few decades workers have recognized this strategy’s value
in simplifying and streamlining parallel algorithms [KL80, Mas92, Aur0S].
Believe it or not, “laziness” in parallel programming often outperforms and
out-scales industriousness! These performance and scalability benefits stem
from the fact that deferring work can enable weakening of synchronization
primitives, thereby reducing synchronization overhead.

Those who are willing and able to read and understand this chapter will
uncover many mysteries, including:

1. The reference-counting trap that awaits unwary developers of concur-
rent code.

2. A concurrent reference counter that avoids not only this trap, but
also avoids expensive atomic read-modify-write accesses, and in
addition avoids as well as writes of any kind to the data structure
being traversed.

3. The under-appreciated restricted form of software transactional mem-
ory that is used heavily within the Linux kernel.

4. A synchronization primitive that allows a concurrently updated linked
data structure to be traversed using exactly the same sequence of
machine instructions that might be used to traverse a sequential
implementation of that same data structure.

300

5. A synchronization primitive whose use cases are far more conceptually
more complex than is the primitive itself.

6. How to choose among the various deferred-processing primitives.

General approaches of work deferral include reference counting (Sec-
tion 9.2), hazard pointers (Section 9.3), sequence locking (Section 9.4), and
RCU (Section 9.5). Finally, Section 9.6 describes how to choose among
the work-deferral schemes covered in this chapter and Section 9.7 discusses
updates. But first, Section 9.1 will introduce an example algorithm that will
be used to compare and contrast these approaches.

9.1 Running Example

An ounce of application is worth a ton of abstraction.

BoOKER T. WASHINGTON

This chapter will use a simplified packet-routing algorithm to demonstrate
the value of these approaches and to allow them to be compared. Routing
algorithms are used in operating-system kernels to deliver each outgoing
TCP/IP packet to the appropriate network interface. This particular algo-
rithm is a simplified version of the classic 1980s packet-train-optimized
algorithm used in BSD UNIX [Jac88], consisting of a simple linked list.!
Modern routing algorithms use more complex data structures, however
a simple algorithm will help highlight issues specific to parallelism in a
straightforward setting.

We further simplify the algorithm by reducing the search key from a
quadruple consisting of source and destination IP addresses and ports all the
way down to a simple integer. The value looked up and returned will also be
a simple integer, so that the data structure is as shown in Figure 9.1, which
directs packets with address 42 to interface 1, address 56 to interface 3, and
address 17 to interface 7. This list will normally be searched frequently

! In other words, this is not OpenBSD, NetBSD, or even FreeBSD, but none other than
Pre-BSD.

301

route_list

!

->addr=42 ->addr=56 ->addr=17

> > ->iface=7

->iface=1 ->iface=3

Figure 9.1: Pre-BSD Packet Routing List

and updated rarely. In Chapter 3 we learned that the best ways to evade
inconvenient laws of physics, such as the finite speed of light and the atomic
nature of matter, is to either partition the data or to rely on read-mostly
sharing. This chapter applies read-mostly sharing techniques to Pre-BSD
packet routing.

Listing 9.1 (route_seq. c) shows a simple single-threaded implemen-
tation corresponding to Figure 9.1. Lines 1-5 define a route_entry
structure and line 6 defines the route_list header. Lines 8-20 define
route_lookup(), which sequentially searches route_list, returning
the corresponding ->iface, or ULONG_MAX if there is no such route en-
try. Lines 22-33 define route_add (), which allocates a route_entry
structure, initializes it, and adds it to the list, returning ~ENOMEM in case
of memory-allocation failure. Finally, lines 35-47 define route_del (),
which removes and frees the specified route_entry structure if it exists,
or returns ~ENOENT otherwise.

This single-threaded implementation serves as a prototype for the various
concurrent implementations in this chapter, and also as an estimate of ideal
scalability and performance.

Listing 9.1: Sequential Pre-BSD Routing Table

struct route_entry {

1
2 struct cds_list_head re_next;

3 unsigned long addr;

4 unsigned long iface;

5}

6 CDS_LIST_HEAD(route_list);

7

8 unsigned long route_lookup(unsigned long addr)
9 {

10 struct route_entry *rep;

11 unsigned long ret;

12

13 cds_list_for_each_entry(rep, &route_list, re_next) {
14 if (rep->addr == addr) {

15 ret = rep->iface;

16 return ret;

17 }

18 }

19 return ULONG_MAX;

20 }

22 int route_add(unsigned long addr, unsigned long interface)

3 {

24 struct route_entry *rep;

25

26 rep = malloc(sizeof (*¥rep));

27 if (!rep)

28 return -ENOMEM;

29 rep->addr = addr;

30 rep->iface = interface;

31 cds_list_add(&rep->re_next, &route_list);
32 return O;

33}

34

35 int route_del(unsigned long addr)

36 {

37 struct route_entry *rep;

38

39 cds_list_for_each_entry(rep, &route_list, re_next) {
40 if (rep->addr == addr) {

41 cds_list_del(&rep->re_next);
0 free(rep);

43 return 0;

44 }

45 }

46 return -ENOENT;

9.2 Reference Counting

I am never letting you go!

UNKNOWN

Reference counting tracks the number of references to a given object in
order to prevent that object from being prematurely freed. As such, it has
a long and honorable history of use dating back to at least an early 1960s
Weizenbaum paper [Wei63]. Weizenbaum discusses reference counting
as if it was already well-known, so it likely dates back to the 1950s or
even to the 1940s. And perhaps even further, given that people repairing
large dangerous machines have long used a mechanical reference-counting
technique implemented via padlocks. Before entering the machine, each
worker locks a padlock onto the machine’s on/oft switch, thus preventing
the machine from being powered on while that worker is inside. Reference
counting is thus an excellent time-honored candidate for a concurrent
implementation of Pre-BSD routing.

To that end, Listing 9.2 shows data structures and the route_lookup ()
function and Listing 9.3 shows the route_add () and route_del () func-
tions (all at route_refcnt.c). Since these algorithms are quite similar to
the sequential algorithm shown in Listing 9.1, only the differences will be
discussed.

Starting with Listing 9.2, line 2 adds the actual reference counter, line 6
adds a —->re_freed use-after-free check field, line 9 adds the routelock
that will be used to synchronize concurrent updates, and lines 11-15 add
re_free(), which sets ->re_freed, enabling route_lookup () to check
for use-after-free bugs. In route_lookup () itself, lines 29-30 release the
reference count of the prior element and free it if the count becomes zero,
and lines 34—42 acquire a reference on the new element, with lines 35 and 36
performing the use-after-free check.

[Quick Quiz 9.1: Why bother with a use-after-free check? H J

In Listing 9.3, lines 11, 15, 24, 32, and 39 introduce locking to synchro-
nize concurrent updates. Line 13 initializes the ->re_freed use-after-free-

Listing 9.2: Reference-Counted Pre-BSD Routing Table Lookup (BUGGY!!!)

};

1
2
3
4
5
6
7
8

struct route_entry {

atomic_t re_refcnt;

struct route_entry *re_next;
unsigned long addr;
unsigned long iface;

int re_freed;

struct route_entry route_list;

9 DEFINE_SPINLOCK(routelock);

10

11 static void re_free(struct route_entry *rep)

12 {

15}

WRITE_ONCE(rep->re_freed, 1);
free(rep);

17 unsigned long route_lookup(unsigned long addr)

18 {

25 retry:

int old;

int new;

struct route_entry *rep;
struct route_entry **repp;
unsigned long ret;

repp = &route_list.re_next;
rep = NULL;
do {
if (rep && atomic_dec_and_test(&rep->re_refcnt))
re_free(rep);
rep = READ_ONCE (xrepp) ;
if (rep == NULL)
return ULONG_MAX;
do {
if (READ_ONCE(rep->re_freed))
abort();
old = atomic_read(&rep->re_refcnt);
if (old <= 0)
goto retry;
new = old + 1;
} while (atomic_cmpxchg(&rep->re_refcnt,
old, new) != old);
repp = &rep->re_next;
} while (rep->addr != addr);
ret = rep->iface;
if (atomic_dec_and_test(&rep->re_refcnt))
re_free(rep);
return ret;

Listing 9.3: Reference-Counted Pre-BSD Routing Table Add/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (lrep)

7 return -ENOMEM;

8 atomic_set (&rep->re_refcnt, 1);

9 rep->addr = addr;

10 rep->iface = interface;

11 spin_lock(&routelock) ;

12 rep->re_next = route_list.re_next;

13 rep->re_freed = 0;

14 route_list.re_next = rep;

15 spin_unlock(&routelock) ;

16 return 0;

17}

18

19 int route_del(unsigned long addr)

20 {

21 struct route_entry *rep;

22 struct route_entry **repp;

23

24 spin_lock(&routelock) ;

25 repp = &route_list.re_next;

2 for (;) {

27 rep = *repp;

28 if (rep == NULL)

29 break;

30 if (rep->addr == addr) {

31 *repp = rep->re_next;
32 spin_unlock(&routelock) ;
33 if (atomic_dec_and_test(&rep->re_refcnt))
34 re_free(rep);
35 return 0;

36 }

37 repp = &rep->re_next;

38 i

39 spin_unlock(&routelock) ;

40 return -ENOENT;

306

2.5x107

T 210’ |
o
[$)
3
= 1.5x10° |
s
g
@ 1x10” |-
35
x
8
3 sx10° |
H‘H | }\ ' \}ref?n}t | }\ .

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.2: Pre-BSD Routing Table Protected by Reference Counting

check field, and finally lines 33-34 invoke re_free() if the new value of
the reference count is zero.

Quick Quiz 9.2: Why doesn’t route_del () in Listing 9.3 use reference counts
to protect the traversal to the element to be freed?

Figure 9.2 shows the performance and scalability of reference counting
on a read-only workload with a ten-element list running on an eight-socket
28-core-per-socket hyperthreaded 2.1 GHz x86 system with a total of 448
hardware threads (hps.2019.12.02a/1scpu.hps). The “ideal” trace was
generated by running the sequential code shown in Listing 9.1, which
works only because this is a read-only workload. The reference-counting
performance is abysmal and its scalability even more so, with the “refcnt”
trace indistinguishable from the x-axis. This should be no surprise in view
of Chapter 3: The reference-count acquisitions and releases have added
frequent shared-memory writes to an otherwise read-only workload, thus
incurring severe retribution from the laws of physics. As well it should,
given that all the wishful thinking in the world is not going to increase
the speed of light or decrease the size of the atoms used in modern digital
electronics.

307

Quick Quiz 9.3: Why the break in the “ideal” line at 224 CPUs in Figure 9.2?
Shouldn’t it be a straight line? W

of the x-axis??? W

Quick Quiz 9.4: Shouldn’t the refcent trace in Figure 9.2 be at least a little bit off ’

But it gets worse.

Running multiple updater threads repeatedly invoking route_add ()
and route_del () will quickly encounter the abort () statement on line 36
of Listing 9.2, which indicates a use-after-free bug. This in turn means
that the reference counts are not only profoundly degrading scalability and
performance, but also failing to provide the needed protection.

One sequence of events leading to the use-after-free bug is as follows,
given the list shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 32 of route_lookup ()
in Listing 9.2. In other words, Thread A has a pointer to the first
element, but has not yet acquired a reference to it.

2. Thread B invokes route_del () in Listing 9.3 to delete the route
entry for address 42. It completes successfully, and because this
entry’s ->re_refcnt field was equal to the value one, it invokes
re_free() to set the ->re_freed field and to free the entry.

3. Thread A continues execution of route_lookup (). Its rep pointer
is non-NULL, but line 35 sees that its -=>re_freed field is non-zero,
so line 36 invokes abort ().

The problem is that the reference count is located in the object to be
protected, but that means that there is no protection during the instant in
time when the reference count itself is being acquired! This is the reference-
counting counterpart of a locking issue noted by Gamsa et al. [GKAS99].
One could imagine using a global lock or reference count to protect the
per-route-entry reference-count acquisition, but this would result in severe
contention issues. Although algorithms exist that allow safe reference-count
acquisition in a concurrent environment [Val95], they are not only extremely
complex and error-prone [MS95], but also provide terrible performance and
scalability [HMBWO7].

308

In short, concurrency has most definitely reduced the usefulness of
reference counting! Of course, as with other synchronization primitives,
reference counts also have well-known ease-of-use shortcomings. These
can result in memory leaks on the one hand or premature freeing on the
other.

And this is the reference-counting trap that awaits unwary developers of
concurrent code, noted back on page 299.

Quick Quiz 9.5: If concurrency has “most definitely reduced the usefulness
of reference counting”, why are there so many reference counters in the Linux
kernel? H

It is sometimes helpful to look at a problem in an entirely different way
in order to successfully solve it. To this end, the next section describes what
could be thought of as an inside-out reference count that provides decent
performance and scalability.

9.3 Hazard Pointers

If in doubt, turn it inside out.

ZARA CARPENTER

One way of avoiding problems with concurrent reference counting is to
implement the reference counters inside out, that is, rather than incrementing
an integer stored in the data element, instead store a pointer to that data
element in per-CPU (or per-thread) lists. Each element of these lists is
called a hazard pointer [Mic04a].2 The value of a given data element’s
“virtual reference counter” can then be obtained by counting the number
of hazard pointers referencing that element. Therefore, if that element has
been rendered inaccessible to readers, and there are no longer any hazard
pointers referencing it, that element may safely be freed.

Of course, this means that hazard-pointer acquisition must be carried
out quite carefully in order to avoid destructive races with concurrent
deletion. One implementation is shown in Listing 9.4, which shows

2 Also independently invented by others [HLMO02].

309

Listing 9.4: Hazard-Pointer Recording and Clearing

static inline void *_h_t_r_impl(void **p,

1

2 hazard_pointer *hp)
3 {

4 void *tmp;

5

6 tmp = READ_ONCE(*p) ;

7 if ('tmp || tmp == (void *)HAZPTR_POISON)
8 return tmp;

9 WRITE_ONCE (hp->p, tmp);

10 smp_mb () ;

11 if (tmp == READ_ONCE(*p))

12 return tmp;

13 return (void *)HAZPTR_POISON;

14}

16 #define hp_try_record(p, hp) _h_t_r_impl((void **)(p), hp)

18 static inline void *hp_record(void #**p,

19 hazard_pointer *hp)
20 {

21 void *tmp;

2

23 do {

2 tmp = hp_try_record(p, hp);

25 } while (tmp == (void *)HAZPTR_POISON) ;
26 return tmp;

27}

28

29 static inline void hp_clear(hazard_pointer *hp)
30 {

31 smp_mb () ;

32 WRITE_ONCE (hp->p, NULL);

33}

310

hp_try_record() on lines 1-16, hp_record() on lines 18-27, and
hp_clear () on lines 29-33 (hazptr.h).

The hp_try_record() macro on line 16 is simply a casting wrapper for
the _h_t_r_impl () function, which attempts to store the pointer referenced
by p into the hazard pointer referenced by hp. If successful, it returns the
value of the stored pointer. If it fails due to that pointer being NULL, it
returns NULL. Finally, if it fails due to racing with an update, it returns a
special HAZPTR_POISON token.

Quick Quiz 9.6: Given that papers on hazard pointers use the bottom bits of each
pointer to mark deleted elements, what is up with HAZPTR_P0IS0ON? M

Line 6 reads the pointer to the object to be protected. If line 8 finds
that this pointer was either NULL or the special HAZPTR_POISON deleted-
object token, it returns the pointer’s value to inform the caller of the failure.
Otherwise, line 9 stores the pointer into the specified hazard pointer, and
line 10 forces full ordering of that store with the reload of the original pointer
on line 11. (See Chapter 15 for more information on memory ordering.) If
the value of the original pointer has not changed, then the hazard pointer
protects the pointed-to object, and in that case, line 12 returns a pointer
to that object, which also indicates success to the caller. Otherwise, if
the pointer changed between the two READ_ONCE() invocations, line 13
indicates failure.

Quick Quiz 9.7: Why does hp_try_record() in Listing 9.4 take a double
indirection to the data element? Why not void * instead of void **? H

The hp_record() function is quite straightforward: It repeatedly
invokes hp_try_record () until the return value is something other than
HAZPTR_POISON.

Quick Quiz 9.8: Why bother with hp_try_record () ? Wouldn't it be easier to
just use the failure-immune hp_record () function? M

The hp_clear () function is even more straightforward, with an smp_
mb () to force full ordering between the caller’s uses of the object protected
by the hazard pointer and the setting of the hazard pointer to NULL.

Once a hazard-pointer-protected object has been removed from its linked
data structure, so that it is now inaccessible to future hazard-pointer readers,

Listing 9.5: Hazard-Pointer Scanning and Freeing

1 int compare(const void *a, const void *b)

2 {

3 return (*(hazptr_head_t **)a - *(hazptr_head_t **)b);
4}

5

6 void hazptr_scan()

7 {

8 hazptr_head_t *cur;

9 int i;

10 hazptr_head_t *tmplist;

11 hazptr_head_t **plist = gplist;

12 unsigned long psize;

13

14 if (plist == NULL) {

15 psize = sizeof (hazptr_head_t *) * K * NR_THREADS;
16 plist = (hazptr_head_t **)malloc(psize);

17 BUG_ON(!plist);

18 gplist = plist;

19

20 smp_mb () ;

21 psize = 0;

22 for (i = 0; i < H; i++) {

23 uintptr_t hp = (uintptr_t)READ_ONCE(HP[il.p);
24

25 if ('hp)

26 continue;

27 plist[psize++] = (hazptr_head_t *)(hp & ~Ox1UL);
28

29 smp_mb () ;

30 gsort(plist, psize, sizeof(hazptr_head_t *), compare);
31 tmplist = rlist;

32 rlist = NULL;

33 rcount = 0;

34 while (tmplist != NULL) {

35 cur = tmplist;

36 tmplist = tmplist->next;

37 if (bsearch(&cur, plist, psize,

38 sizeof (hazptr_head_t *), compare)) {
39 cur->next = rlist;

40 rlist = cur;

41 rcount++;

42 } else {

43 hazptr_free(cur);

44 }

45 }

46 }

47

48 void hazptr_free_later (hazptr_head_t *n)

49 {

50 n->next = rlist;

51 rlist = n;

52 rcount++;

53 if (rcount >= R) {

54 hazptr_scan();

55 }

312

it is passed to hazptr_free_later (), which is shown on lines 48-56 of
Listing 9.5 (hazptr.c). Lines 50 and 51 enqueue the object on a per-thread
list r1ist and line 52 counts the object in rcount. If line 53 sees that
a sufficiently large number of objects are now queued, line 54 invokes
hazptr_scan() to attempt to free some of them.

The hazptr_scan() function is shown on lines 646 of the listing.
This function relies on a fixed maximum number of threads (NR_THREADS)
and a fixed maximum number of hazard pointers per thread (K), which
allows a fixed-size array of hazard pointers to be used. Because any thread
might need to scan the hazard pointers, each thread maintains its own array,
which is referenced by the per-thread variable gplist. If line 14 determines
that this thread has not yet allocated its gplist, lines 1518 carry out the
allocation. The memory barrier on line 20 ensures that all threads see
the removal of all objects by this thread before lines 22-28 scan all of the
hazard pointers, accumulating non-NULL pointers into the plist array and
counting them in psize. The memory barrier on line 29 ensures that the
reads of the hazard pointers happen before any objects are freed. Line 30
then sorts this array to enable use of binary search below.

Lines 31 and 32 remove all elements from this thread’s list of to-be-freed
objects, placing them on the local tmplist and line 33 zeroes the count.
Each pass through the loop spanning lines 34—45 processes each of the
to-be-freed objects. Lines 35 and 36 remove the first object from tmplist,
and if lines 37 and 38 determine that there is a hazard pointer protecting
this object, lines 39-41 place it back onto rlist. Otherwise, line 43 frees
the object.

The Pre-BSD routing example can use hazard pointers as shown in
Listing 9.6 for data structures and route_lookup (), and in Listing 9.7 for
route_add() and route_del() (route_hazptr.c). As with reference
counting, the hazard-pointers implementation is quite similar to the sequen-
tial algorithm shown in Listing 9.1 on page 302, so only differences will be
discussed.

Starting with Listing 9.6, line 2 shows the ->hh field used to queue
objects pending hazard-pointer free, line 6 shows the ->re_freed field
used to detect use-after-free bugs, and line 21 invokes hp_try_record ()
to attempt to acquire a hazard pointer. If the return value is NULL, line 23

)
)

Listing 9.6: Hazard-Pointer Pre-BSD Routing Table Lookup

I struct route_entry {

2 struct hazptr_head hh;

3 struct route_entry *re_next;
4 unsigned long addr;

5 unsigned long iface;
6
7
8
9

int re_freed;
};
struct route_entry route_list;
DEFINE_SPINLOCK (routelock) ;
10 hazard_pointer __thread *my_hazptr;
11
12 unsigned long route_lookup(unsigned long addr)

13 {

14 int offset = 0O;

15 struct route_entry *rep;

16 struct route_entry **repp;

17

18 retry:

19 repp = &route_list.re_next;

20 do {

21 rep = hp_try_record(repp, &my_hazptr[offset]);
2 if (lrep)

23 return ULONG_MAX;

24 if ((uintptr_t)rep == HAZPTR_POISON)
25 goto retry;

26 repp = &rep->re_next;

27 } while (rep->addr != addr);

28 if (READ_ONCE(rep->re_freed))

29 abort();

30 return rep->iface;

31}

314

returns a not-found indication to the caller. If the call to hp_try_record()
raced with deletion, line 25 branches back to line 18’s retry to re-traverse
the list from the beginning. The do—while loop falls through when the
desired element is located, but if this element has already been freed, line 29
terminates the program. Otherwise, the element’s ->iface field is returned
to the caller.

Note that line 21 invokes hp_try_record() rather than the easier-
to-use hp_record(), restarting the full search upon hp_try_record ()
failure. And such restarting is absolutely required for correctness. To see
this, consider a hazard-pointer-protected linked list containing elements A,
B, and C that is subjected to the following sequence of events:

1. Thread O stores a hazard pointer to element B (having presumably
traversed to element B from element A).

2. Thread 1 removes element B from the list, which sets the pointer
from element B to element C to the special HAZPTR_POISON value in
order to mark the deletion. Because Thread 0 has a hazard pointer to
element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because there are no
hazard pointers referencing element C, it is immediately freed.

4. Thread O attempts to acquire a hazard pointer to now-removed el-
ement B’s successor, but hp_try_record() returns the HAZPTR_
POISON value, forcing the caller to restart its traversal from the
beginning of the list.

Which is a very good thing, because B’s successor is the now-freed
element C, which means that Thread 0’s subsequent accesses might have
resulted in arbitrarily horrible memory corruption, especially if the memory
for element C had since been re-allocated for some other purpose. Therefore,
hazard-pointer readers must typically restart the full traversal in the face of a
concurrent deletion. Often the restart must go back to some global (and thus
immortal) pointer, but it is sometimes possible to restart at some intermediate
location if that location is guaranteed to still be live, for example, due to the
current thread holding a lock, a reference count, etc.

315

Quick Quiz 9.9: Readers must “typically” restart? What are some exceptions?

Because algorithms using hazard pointers might be restarted at any step
of their traversal through the linked data structure, such algorithms must
typically take care to avoid making any changes to the data structure until
after they have acquired all the hazard pointers that are required for the
update in question.

Quick Quiz 9.10: But don’t these restrictions on hazard pointers also apply to
other forms of reference counting? M

These hazard-pointer restrictions result in great benefits to readers,
courtesy of the fact that the hazard pointers are stored local to each CPU
or thread, which in turn allows traversals to be carried out without any
writes to the data structures being traversed. Referring back to Figure 5.8 on
page 170, hazard pointers enable the CPU caches to do resource replication,
which in turn allows weakening of the parallel-access-control mechanism,
thus boosting performance and scalability.

Another advantage of restarting hazard pointers traversals is a reduction
in minimal memory footprint: Any object not currently referenced by some
hazard pointer may be immediately freed. In contrast, Section 9.5 will
discuss a mechanism that avoids read-side retries (and minimizes read-side
overhead), but which can result in a much larger memory footprint.

The route_add () and route_del () functions are shown in Listing 9.7.
Line 10 initializes ->re_freed, line 31 poisons the ->re_next field of
the newly removed object, and line 33 passes that object to the hazptr_
free_later () function, which will free that object once it is safe to do so.
The spinlocks work the same as in Listing 9.3.

Figure 9.3 shows the hazard-pointers-protected Pre-BSD routing algo-
rithm’s performance on the same read-only workload as for Figure 9.2.
Although hazard pointers scale far better than does reference counting, haz-
ard pointers still require readers to do writes to shared memory (albeit with
much improved locality of reference), and also require a full memory barrier
and retry check for each object traversed. Therefore, hazard-pointers perfor-
mance is still far short of ideal. On the other hand, unlike naive approaches to
concurrent reference-counting, hazard pointers not only operate correctly for

316

Listing 9.7: Hazard-Pointer Pre-BSD Routing Table Add/Delete

1 i
2 {
3
4
5
6
7
8
9

10
11
12
13
14
15

16 ¥

nt route_add(unsigned long addr, unsigned long interface)

struct route_entry *rep;

rep = malloc(sizeof (*rep));

if (!rep)

return -ENOMEM;
rep->addr = addr;
rep->iface = interface;
rep->re_freed = 0;
spin_lock(&routelock) ;
rep->re_next = route_list.re_next;
route_list.re_next = rep;
spin_unlock(&routelock) ;

return 0;

18 int route_del(unsigned long addr)

19 {

struct route_entry *rep;
struct route_entry **repp;

spin_lock(&routelock) ;
repp = &route_list.re_next;

for (5;) {

rep = *repp;
if (rep == NULL)

break;

if (rep->addr == addr) {

}

*repp = rep->re_next;

rep->re_next = (struct route_entry *)HAZPTR_POISON;
spin_unlock(&routelock) ;

hazptr_free_later (&rep->hh);

return 0;

repp = &rep->re_next;

}

spin_unlock(&routelock) ;

return -ENOENT;

317

2.5x107
T 210’ | -
o
[$)
&
= 7
S 15x10° |- -
s
g
@ 1x10” |- -
3
x
8
S sx10® |- et
et hazptr
*JT#'-\-F\ L1

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.3: Pre-BSD Routing Table Protected by Hazard Pointers

workloads involving concurrent updates, but also exhibit excellent scalability.
Additional performance comparisons with other mechanisms may be found
in Chapter 10 and in other publications [HMBWO07, McK13, Mic04a].

Quick Quiz 9.11: Figure 9.3 shows no sign of hyperthread-induced flattening at
224 threads. Why is that? H

Quick Quiz 9.12: The paper “Structured Deferral: Synchronization via Pro-
crastination” [McK13] shows that hazard pointers have near-ideal performance.
Whatever happened in Figure 9.3??? W

Quick Quiz 9.13: What needs to be done to convert reference-counted code to
instead use hazard pointers? H

On June 17, 2023, the ISO C++ Standards committee voted hazard
pointers into C++26 [MWM™*23b]. Daniel Anderson has produced a
prototype C++ atomic shared-pointer implementation based on hazard
pointers [And23].

And hazard pointers are the concurrent reference counter mentioned
at the beginning of this chapter on page 299. The next section attempts

318

to improve on hazard pointers by using sequence locks, which avoid both
read-side writes and per-object memory barriers.

9.4 Sequence Locks

It’ll be just like starting over.

JOHN LENNON

The published sequence-lock record [Eas71, Lam77] extends back as far
as that of reader-writer locking, but sequence locks nevertheless remain
in relative obscurity. Sequence locks are used in the Linux kernel for
read-mostly data that must be seen in a consistent state by readers. However,
unlike reader-writer locking, readers do not exclude writers. Instead, like
hazard pointers, sequence locks force readers to retry an operation if they
detect activity from a concurrent writer. As can be seen from Figure 9.4, it
is important to design code using sequence locks so that readers very rarely
need to retry.

Quick Quiz 9.14: Why isn’t this sequence-lock discussion in Chapter 7, you
know, the one on locking? W

The key component of sequence locking is the sequence number, which
has an even value in the absence of updaters and an odd value if there is an
update in progress. Readers can then snapshot the value before and after

Listing 9.8: Sequence-Locking Reader

1 do {

2 seq = read_segbegin(&test_seqlock);
3 /* read-side access. */

4 } while (read_seqretry(&test_seqlock, seq));

Listing 9.9: Sequence-Locking Writer
| write_seqlock(&test_seqlock) ;

2 /* Update */

3 write_sequnlock(&test_seqlock);

319

AR, | finally got
done reading!

No, you didn't!
Start over!

Figure 9.4: Reader And Uncooperative Sequence Lock

each access. If either snapshot has an odd value, or if the two snapshots differ,
there has been a concurrent update, and the reader must discard the results of
the access and then retry it. Readers therefore use the read_segbegin()
and read_seqretry () functions shown in Listing 9.8 when accessing data
protected by a sequence lock. Writers must increment the value before and
after each update, and only one writer is permitted at a given time. Writers
therefore use the write_seqlock() and write_sequnlock() functions
shown in Listing 9.9 when updating data protected by a sequence lock.

As a result, sequence-lock-protected data can have an arbitrarily large
number of concurrent readers, but only one writer at a time. Sequence
locking is used in the Linux kernel to protect calibration quantities used
for timekeeping. It is also used in pathname traversal to detect concurrent
rename operations.

A simple implementation of sequence locks is shown in Listing 9.10
(seqlock.h). The seqlock_t data structure is shown on lines 1-4,
and contains the sequence number along with a lock to serialize writers.
Lines 6-10 show seqlock_init (), which, as the name indicates, initializes
a seqlock_t.

320

Listing 9.10: Sequence-Locking Implementation

1
2
3
4
5

39
40
41
42
43

typedef struct {
unsigned long seq;
spinlock_t lock;

} seqlock_t;

static inline void seqlock_init(seqlock_t *slp)

{
slp->seq = 0;
spin_lock_init (&slp->lock);
}
static inline unsigned long read_seqbegin(seqlock_t *slp)
{
unsigned long s;
s = READ_ONCE(slp->seq);
smp_mb() ;
return s & ~0x1UL;
}

static inline int read_seqretry(seqlock_t #*slp,
unsigned long oldseq)

{
unsigned long s;
smp_mb () ;
s = READ_ONCE(slp->seq);
return s != oldseq;
}
static inline void write_seqlock(seqlock_t *slp)
{
spin_lock(&slp->lock);
WRITE_ONCE(slp->seq, READ_ONCE(slp->seq) + 1);
smp_mb () ;
}

static inline void write_sequnlock(seqlock_t *slp)

{
smp_mb () ;
WRITE_ONCE(slp->seq, READ_ONCE(slp->seq) + 1);
spin_unlock(&slp->lock) ;

321

Lines 12-19 show read_segbegin (), which begins a sequence-lock
read-side critical section. Line 16 takes a snapshot of the sequence counter,
and line 17 orders this snapshot operation before the caller’s critical section.
Finally, line 18 returns the value of the snapshot (with the least-significant
bit cleared), which the caller will pass to a later call to read_seqretry().

Quick Quiz 9.15: Why not have read_seqgbegin() in Listing 9.10 check
whether the sequence-number value is odd, and, if so, retry internally rather than
entering a doomed read-side critical section?

Lines 21-29 show read_seqretry (), which returns true if there
was at least one writer since the time of the corresponding call to read_
seqbegin(). Line 26 orders the caller’s prior critical section before
line 27’s fetch of the new snapshot of the sequence counter. Line 28 checks
whether the sequence counter has changed, in other words, whether there
has been at least one writer, and returns true if so.

[Quick Quiz 9.16: Why is the smp_mb () on line 26 of Listing 9.10 needed? .]

Quick Quiz 9.17: Can’t weaker memory barriers be used in the code in
Listing 9.10? W

Quick Quiz 9.18: What prevents sequence-locking updaters from starving
readers? W

Lines 31-36 show write_seqlock(), which simply acquires the lock,
increments the sequence number, and executes a memory barrier to ensure
that this increment is ordered before the caller’s critical section. Lines 38—43
show write_sequnlock(), which executes a memory barrier to ensure
that the caller’s critical section is ordered before the increment of the
sequence number on line 41, then releases the lock.

Quick Quiz 9.19: What if something else serializes writers, so that the lock is
not needed? M

Quick Quiz 9.20: Why isn’t seq on line 2 of Listing 9.10 unsigned rather than
unsigned long? After all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone? M

322

Listing 9.11: Sequence-Locked Pre-BSD Routing Table Lookup (BUGGY!!!)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

struct route_entry {

};

struct route_entry *re_next;
unsigned long addr;
unsigned long iface;

int re_freed;

struct route_entry route_list;
DEFINE_SEQ_LOCK(sl);

unsigned long route_lookup(unsigned long addr)

{

retry:

struct route_entry *rep;
struct route_entry **repp;
unsigned long ret;
unsigned long s;

s = read_segbegin(&sl);
repp = &route_list.re_next;
do {
rep = READ_ONCE (*repp) ;
if (rep == NULL) {
if (read_seqretry(&sl, s))
goto retry;
return ULONG_MAX;
}
repp = &rep->re_next;
} while (rep->addr != addr);
if (READ_ONCE(rep->re_freed))
abort();
ret = rep->iface;
if (read_seqretry(&sl, s))
goto retry;
return ret;

)
®]
w

Listing 9.12: Sequence-Locked Pre-BSD Routing Table Add/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (lrep)

7 return -ENOMEM;

8 rep->addr = addr;

9 rep->iface = interface;

10 rep->re_freed = 0;

1 write_seqlock(&sl);

12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;

14 write_sequnlock(&sl);

15 return O;

16 }

17

18 int route_del(unsigned long addr)

19 {

20 struct route_entry *rep;

21 struct route_entry **repp;

22

23 write_seqlock(&sl);

24 repp = &route_list.re_next;

25 for (53) {

26 rep = *repp;

27 if (rep == NULL)

28 break;

29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 write_sequnlock(&sl);
32 smp_mb () ;

33 rep->re_freed = 1;
34 free(rep);

35 return 0;

36 }

37 repp = &rep->re_next;

38 b

39 write_sequnlock(&sl) ;

40 return -ENOENT;

2.5x107

T 210’ | -

o

[$)

&

= 1.5x10° | -

s

g

@ 1x10” |- -

3

S

3 s Tt
et hazptr

| | | | | |

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.5: Pre-BSD Routing Table Protected by Sequence Locking

So what happens when sequence locking is applied to the Pre-BSD rout-
ing table? Listing 9.11 shows the data structures and route_lookup (), and
Listing 9.12 shows route_add () and route_del () (route_seqlock.c).
This implementation is once again similar to its counterparts in earlier
sections, so only the differences will be highlighted.

In Listing 9.11, line 5 adds ->re_freed, which is checked on lines 29
and 30. Line 8 adds a sequence lock, which is used by route_lookup ()
on lines 18, 23, and 32, with lines 24 and 33 branching back to the retry
label on line 17. The effect is to retry any lookup that runs concurrently
with an update.

In Listing 9.12, lines 11, 14, 23, 31, and 39 acquire and release
the sequence lock, while lines 10 and 33 handle ->re_freed. This
implementation is therefore quite straightforward.

It also performs better on the read-only workload, as can be seen in
Figure 9.5, though its performance is still far from ideal. Worse yet, it suffers
use-after-free failures. The problem is that the reader might encounter a
segmentation violation due to accessing an already-freed structure before
read_seqretry() has a chance to warn of the concurrent update.

325

Quick Quiz 9.21: Can this bug be fixed? In other words, can you use sequence
locks as the only synchronization mechanism protecting a linked list supporting
concurrent addition, deletion, and lookup? W

As hinted on page 299, both the read-side and write-side critical sections
of a sequence lock can be thought of as transactions, and sequence locking
therefore can be thought of as a limited form of transactional memory, which
will be discussed in Section 17.2. The limitations of sequence locking are:
(1) Sequence locking restricts updates and (2) Sequence locking does not
permit traversal of pointers to objects that might be freed by updaters. These
limitations are of course overcome by transactional memory, but can also
be overcome by combining other synchronization primitives with sequence
locking.

Sequence locks allow writers to defer readers, but not vice versa. This
can result in unfairness and even starvation in writer-heavy workloads.?
On the other hand, in the absence of writers, sequence-lock readers are
reasonably fast and scale linearly. It is only human to want the best of both
worlds: Fast readers without the possibility of read-side failure, let alone
starvation. In addition, it would also be nice to overcome sequence locking’s
limitations with pointers. The following section presents a synchronization
mechanism with exactly these properties.

9.5 Read-Copy Update (RCU)

“Free” is a very good price!

Tom PETERSON

All of the mechanisms discussed in the preceding sections used one of a
number of approaches to defer specific actions until they may be carried
out safely. The reference counters discussed in Section 9.2 use explicit
counters to defer actions that could disturb readers, which results in read-

3 Dmitry Vyukov describes one way to reduce (but, sadly, not eliminate) reader starva-
tion: http://www.1024cores.net/home/lock-free-algorithms/reader-writer-
problem/improved-lock-free-seqlock.

http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock

326

side contention and thus poor scalability. The hazard pointers covered
by Section 9.3 uses implicit counters in the guise of per-thread lists of
pointer. This avoids read-side contention, but requires readers to do
stores and conditional branches, as well as either full memory barriers in
read-side primitives or real-time-unfriendly inter-processor interrupts in
update-side primitives.* The sequence lock presented in Section 9.4 also
avoids read-side contention, but does not protect pointer traversals and, like
hazard pointers, requires either full memory barriers in read-side primitives,
or inter-processor interrupts in update-side primitives. These schemes’
shortcomings raise the question of whether it is possible to do better.

This section introduces read-copy update (RCU), which provides an
API that allows readers to be associated with regions in the source code,
rather than with expensive updates to frequently updated shared data.
The remainder of this section examines RCU from a number of different
perspectives. Section 9.5.1 provides the classic introduction to RCU,
Section 9.5.2 covers fundamental RCU concepts, Section 9.5.3 presents the
Linux-kernel API, Section 9.5.4 introduces some common RCU use cases,
and finally Section 9.5.5 covers recent work related to RCU.

Although RCU has gained a reputation for being subtle and difficult,
when used properly, it is quite straightforward. In fact, no less an authority
than Butler Lampson classifies it as easy concurrency [Lam22, Chapter 3].
And Lampson is quite right: The core concept behind RCU is nothing more
than that updaters are guaranteed to wait for pre-existing (and only pre-
existing) readers to complete. For their part, Balmau, Guerraoui, Herlihy,
and Zablotchi state “QSBR [a particular class of RCU implementations] is
fast and can be applied to virtually any data structure”.

On the other hand, making good use of RCU often requires that you
think differently about concurrency in general and about your use case in
particular. Much of the remainder of this section therofore provides a guide
to mapping use cases onto RCU.

4 In some important special cases, this extra work can be avoided by using link counting
as exemplified by the UnboundedQueue and ConcurrentHashMap data structures implemented
in Folly open-source library (https://github.com/facebook/folly).

https://github.com/facebook/folly

327

Quick Quiz 9.22: RCU cannot possibly be this simple!!! And what on earth
could you possibly do with a synchronization primitive that is nothing more than a
simple delay??? H

9.5.1 Introduction to RCU

The approaches discussed in the preceding sections have provided good
scalability but decidedly non-ideal performance for the Pre-BSD routing
table. Therefore, in the spirit of “only those who have gone too far know
how far you can go”,> we will go all the way, looking into algorithms in
which concurrent readers might well execute exactly the same sequence of
assembly language instructions as would a single-threaded lookup, despite
the presence of concurrent updates. Of course, this laudable goal might
raise serious implementability questions, but we cannot possibly succeed if
we don’t even try!

And should we succeed, we will have uncovered yet another of the
mysteries set forth on page 299.

9.5.1.1 Minimal Insertion and Deletion

To minimize implementability concerns, we focus on a minimal data
structure, which consists of a single global pointer that is either NULL or
references a single structure. Minimal though it might be, this data structure
is heavily used in production [RH18]. A classic approach for insertion is
shown in Figure 9.6, which shows four states with time advancing from top
to bottom. The first row shows the initial state, with gptr equal to NULL.
In the second row, we have allocated a structure which is uninitialized, as
indicated by the question marks. In the third row, we have initialized the
structure. Finally, in the fourth and final row, we have updated gptr to
reference the newly allocated and initialized element.

We might hope that this assignment to gptr could use a simple C-
language assignment statement. Unfortunately, Section 4.3.4.1 dashes these
hopes. Therefore, the updater cannot use a simple C-language assignment,

5 With apologies to T. S. Eliot.

(€] gptr

328

———

) gptr

———

®) gptr

e

smp_store_release(&gptr, p);

4 gptr

R

->addr=42
->iface=1

‘/P

Figure 9.6: Insertion With Concurrent Readers

v2025.12.18a

329

but must instead use smp_store_release() as shown in the figure, or, as
will be seen, rcu_assign_pointer ().

Similarly, one might hope that readers could use a single C-language
assignment to fetch the value of gptr, and be guaranteed to either get the
old value of NULL or to get the newly installed pointer, but either way see
a valid result. Unfortunately, Section 4.3.4.1 dashes these hopes as well.
To obtain this guarantee, readers must instead use READ_ONCE(), or, as
will be seen, rcu_dereference (). However, on most modern computer
systems, each of these read-side primitives can be implemented with a
single load instruction, exactly the instruction that would normally be used
in single-threaded code.

Reviewing Figure 9.6 from the viewpoint of readers, in the first three
states all readers see gptr having the value NULL. Upon entering the fourth
state, some readers might see gptr still having the value NULL while others
might see it referencing the newly inserted element, but after some time,
all readers will see this new element. At all times, all readers will see
gptr as containing a valid pointer. Therefore, it really is possible to add
new data to linked data structures while allowing concurrent readers to
execute the same sequence of machine instructions that is normally used in
single-threaded code. This no-cost approach to concurrent reading provides
excellent performance and scalability, and also is eminently suitable for
real-time use.

Insertion is of course quite useful, but sooner or later, it will also be
necessary to delete data. As can be seen in Figure 9.7, the first step is
easy. Again taking the lessons from Section 4.3.4.1 to heart, smp_store_
release() is used to NULL the pointer, thus moving from the first row
to the second in the figure. At this point, pre-existing readers see the old
structure with ->addr of 42 and ->iface of 1, but new readers will see
a NULL pointer, that is, concurrent readers can disagree on the state, as
indicated by the “2 Versions” in the figure.

Quick Quiz 9.23: Why does Figure 9.7 use smp_store_release() given that
it is storing a NULL pointer? Wouldn’t WRITE_ONCE () work just as well in this
case, given that there is no structure initialization to order against the store of the
NULL pointer? H

)

gptr

—>

->addr=42
->iface=1

/ Readers?

1 Version

smp_store_release(&gptr, NULL);

)

gptr

->addr=42
->iface=1

/ Readers?

2 Versions

wait for readers???

®3)

gptr

Re%rs?

1 Version

’—

)

gptr

1 Version

Figure 9.7: Deletion With Concurrent Readers

v2025.12.18a

331

Quick Quiz 9.24: Readers running concurrently with each other and with the
procedure outlined in Figure 9.7 can disagree on the value of gptr. Isn’t that just
a wee bit problematic??? H

We get back to a single version simply by waiting for all the pre-existing
readers to complete, as shown in row 3.° At that point, all the pre-existing
readers are done, and no later reader has a path to the old data item, so there
can no longer be any readers referencing it. It may therefore be safely freed,
as shown on row 4.

Thus, given a way to wait for pre-existing readers to complete, it is
possible to both add data to and remove data from a linked data structure,
despite the readers executing the same sequence of machine instructions
that would be appropriate for single-threaded execution. So perhaps going
all the way was not too far after all!

But how can we tell when all of the pre-existing readers have in fact
completed? This question is the topic of Section 9.5.1.3. But first, the next
section defines RCU’s core API.

9.5.1.2 Core RCU API

The full Linux-kernel API is quite extensive, with more than one hundred
API members. However, this section will confine itself to six core RCU API
members, which suffices for the upcoming sections introducing RCU and
covering its fundamentals. The full API is covered in Section 9.5.3.

Three members of the core APIs are used by readers. The rcu_
read_lock() and rcu_read_unlock() functions delimit RCU read-side
critical sections. These may be nested, so that one rcu_read_lock()—
rcu_read_unlock() pair can be enclosed within another. In this case,
the nested set of RCU read-side critical sections act as one large critical
section covering the full extent of the nested set. The third read-side
API member, rcu_dereference(), fetches an RCU-protected pointer.
Conceptually, rcu_dereference () simply loads from memory, but we
will see in Section 9.5.2.1 that rcu_dereference() must prevent the

6 Which means that the wait-for-readers property introduced in Section 9.5 really did have
an important use after all!

)
@
)

Table 9.1: Core RCU API

Primitive Purpose

Readers rcu_read_lock() Start an RCU read-side critical section.
rcu_read_unlock() End an RCU read-side critical section.
rcu_dereference() Safely load an RCU-protected pointer.

Updaters synchronize_rcu() Wait for all pre-existing RCU read-side critical

sections to complete.

call_rcu() Invoke the specified function after all pre-existing
RCU read-side critical sections complete.

rcu_assign_pointer() Safely update an RCU-protected pointer.

compiler and (in one case) the CPU from reordering its load with later
memory operations that dereference this pointer.

[Quick Quiz 9.25: What is an RCU-protected pointer?]

The other three members of the core APIs are used by updaters. The
synchronize_rcu() function implements the “wait for readers” oper-
ation from Figure 9.7. The call_rcu() function is the asynchronous
counterpart of synchronize_rcu() by invoking the specified function
after all pre-existing RCU readers have completed. Finally, the rcu_
assign_pointer () macro is used to update an RCU-protected pointer.
Conceptually, this is simply an assignment statement, but we will see in Sec-
tion 9.5.2.1 that rcu_assign_pointer () must prevent the compiler and
the CPU from reordering this assignment to precede any prior assignments
used to initialize the pointed-to structure.

Quick Quiz 9.26: What does synchronize_rcu() do if it starts at about the
same time as an rcu_read_lock()? W

The core RCU API is summarized in Table 9.1 for easy reference. With
that, we are ready to continue this introduction to RCU with the key RCU
operation, waiting for readers.

9.5.1.3 Waiting for Readers

It is tempting to base the reader-waiting functionality of synchronize_
rcu() and call_rcu() on a reference counter updated by rcu_read_
lock() and rcu_read_unlock(), but Figure 5.1 in Chapter 5 shows
that concurrent reference counting results in extreme overhead. This
extreme overhead was confirmed in the specific case of reference counters
in Figure 9.2 on page 306. Hazard pointers profoundly reduce this overhead,
but, as we saw in Figure 9.3 on page 317, not to zero. Nevertheless, many
RCU implementations use counters with carefully controlled cache locality.

A second approach observes that memory synchronization is expensive,
and therefore uses registers instead, namely each CPU’s or thread’s program
counter (PC), thus imposing no overhead on readers, at least in the absence
of concurrent updates. The updater polls each relevant PC, and if that PC is
not within read-side code, then the corresponding CPU or thread is within a
quiescent state, in turn signaling the completion of any reader that might
have access to the newly removed data element. Once all CPU’s or thread’s
PCs have been observed to be outside of any reader, the grace period has
completed. Please note that this approach poses some serious challenges,
including memory ordering, functions that are sometimes invoked from
readers, and ever-exciting code-motion optimizations. Nevertheless, this
approach is said to be used in production [Ash15].

A third approach is to simply wait for a fixed period of time that is long
enough to comfortably exceed the lifetime of any reasonable reader [Jac93,
Joh95]. This can work quite well in hard real-time systems [RLPB18],
but in less exotic settings, Murphy says that it is critically important to be
prepared even for unreasonably long-lived readers. To see this, consider
the consequences of failing do so: A data item will be freed while the
unreasonable reader is still referencing it, and that item might well be
immediately reallocated, possibly even as a data item of some other type.
The unreasonable reader and the unwitting reallocator would then be
attempting to use the same memory for two very different purposes. The
ensuing mess will be exceedingly difficult to debug.

A fourth approach is to wait forever, secure in the knowledge that doing
so will accommodate even the most unreasonable reader. This approach
is also called “leaking memory”, and has a bad reputation due to the

334

fact that memory leaks often require untimely and inconvenient reboots.
Nevertheless, this is a viable strategy when the update rate and the uptime
are both sharply bounded. For example, this approach could work well in a
high-availability cluster where systems were periodically crashed in order to
ensure that cluster really remained highly available.” Leaking the memory
is also a viable strategy in environments having garbage collectors, in which
case the garbage collector can be thought of as plugging the leak [KL80].
However, if your environment lacks a garbage collector, read on!

A fifth approach avoids the period crashes in favor of periodically
“stopping the world”, as exemplified by the traditional stop-the-world garbage
collector. This approach was also heavily used during the decades before
ubiquitous connectivity, when it was common practice to power systems
off at the end of each working day. However, in today’s always-connected
always-on world, stopping the world can gravely degrade response times,
which has been one motivation for the development of concurrent garbage
collectors [BCRO3]. Furthermore, although we need all pre-existing readers
to complete, we do not need them all to complete at the same time.

This observation leads to the sixth approach, which is stopping one CPU
or thread at a time. This approach has the advantage of not degrading reader
response times at all, let alone gravely. Furthermore, numerous applications
already have states (termed quiescent states) that can be reached only after
all pre-existing readers are done. In transaction-processing systems, the
time between a pair of successive transactions might be a quiescent state.
In reactive systems, the state between a pair of successive events might
be a quiescent state. Within non-preemptive operating-systems kernels, a
context switch can be a quiescent state [MS98a]. Either way, once all CPUs
and/or threads have passed through a quiescent state, the system is said to
have completed a grace period, at which point all readers in existence at the
start of that grace period are guaranteed to have completed. As a result, it is
also guaranteed to be safe to free any removed data items that were removed
prior to the start of that grace period.®

7 The program that forces the periodic crashing is sometimes known as a “chaos monkey”:
https://netflix.github.io/chaosmonkey/. However, it might also be a mistake to
neglect chaos caused by systems running for too long.

8 1t is possible to do much more with RCU than simply defer reclamation of memory, but
deferred reclamation is RCU’s most common use case, and is therefore an excellent place to

https://netflix.github.io/chaosmonkey/

T
330

Within a non-preemptive operating-system kernel, for context switch to
be a valid quiescent state, readers must be prohibited from blocking while
referencing a given instance data structure obtained via the gptr pointer
shown in Figures 9.6 and 9.7. This no-blocking constraint is consistent
with similar constraints on pure spinlocks, where a CPU is forbidden from
blocking while holding a spinlock. Without this constraint, all CPUs might
be consumed by threads spinning attempting to acquire a spinlock held by a
blocked thread. The spinning threads will not relinquish their CPUs until
they acquire the lock, but the thread holding the lock cannot possibly release
it until one of the spinning threads relinquishes a CPU. This is a classic
deadlock situation, and this deadlock is avoided by forbidding blocking
while holding a spinlock.

Again, this same constraint is imposed on reader threads dereferencing
gptr: Such threads are not allowed to block until after they are done using
the pointed-to data item. Returning to the second row of Figure 9.7, where the
updater has just completed executing the smp_store_release (), imagine
that CPU 0 executes a context switch. Because readers are not permitted to
block while traversing the linked list, we are guaranteed that all prior readers
that might have been running on CPU 0 will have completed. Extending
this line of reasoning to the other CPUs, once each CPU has been observed
executing a context switch, we are guaranteed that all prior readers have
completed, and that there are no longer any reader threads referencing the
newly removed data element. The updater can then safely free that data
element, resulting in the state shown at the bottom of Figure 9.7.

This approach is termed quiescent-state-based reclamation
(QSBR) [HMBO06]. A QSBR schematic is shown in Figure 9.8, with
time advancing from the top of the figure to the bottom. The cyan-colored
boxes depict RCU read-side critical sections, each of which begins with
rcu_read_lock() and ends with rcu_read_unlock(). CPU 1 does the
WRITE_ONCE() that removes the current data item (presumably having
previously read the pointer value and availed itself of appropriate synchro-
nization), then waits for readers. This wait operation results in an immediate
context switch, which is a quiescent state (denoted by the pink circle), which

start. For an example of the more general case of deferred execution, please see phased state
change in Section 9.5.4.3.

336

(gptr, NULL);

CPU1 CPU 2 CPU 3

8) Context Switch

/

Reader

synchronize_rcu()
WRITE_ONCE

Grace Period /
~

Figure 9.8: QSBR: Waiting for Pre-Existing Readers

v2025.12.18a

337
in turn means that all prior reads on CPU 1 have completed. Next, CPU 2
does a context switch, so that all readers on CPUs 1 and 2 are now known
to have completed. Finally, CPU 3 does a context switch. At this point, all
readers throughout the entire system are known to have completed, so the
grace period ends, permitting synchronize_rcu() to return to its caller,
in turn permitting CPU 1 to free the old data item.

Quick Quiz 9.27: In Figure 9.8, the last of CPU 3’s readers that could possibly
have access to the old data item ended before the grace period even started! So
why would anyone bother waiting until CPU 3’s later context switch???

9.5.1.4 Toy Implementation

Although production-quality QSBR implementations can be quite complex,
a toy non-preemptive Linux-kernel implementation is quite simple:

1 | void synchronize_rcu(void)

2| {

3 int cpu;

4

5 for_each_online_cpu(cpu)

6 sched_setaffinity(current->pid, cpumask_of (cpu));
7}

The for_each_online_cpu() primitive iterates over all CPUs, and
the sched_setaffinity() function causes the current thread to execute
on the specified CPU, which forces the destination CPU to execute a context
switch. Therefore, once the for_each_online_cpu() has completed,
each CPU has executed a context switch, which in turn guarantees that all
pre-existing reader threads have completed.

Please note that this approach is not production quality. Correct han-
dling of a number of corner cases and the need for a number of powerful
optimizations mean that production-quality implementations are quite com-
plex. In addition, RCU implementations for preemptible environments
require that readers actually do something, which in non-real-time Linux-
kernel environments can be as simple as defining rcu_read_lock() and
rcu_read_unlock() as preempt_disable() and preempt_enable(),

Listing 9.13: Insertion and Deletion With Concurrent Readers

1
2
3
4
5

struct route *gptr;

int access_route(int (*f)(struct route *rp))

{

}

int ret = -1;
struct route *rp;

rcu_read_lock();
rp = rcu_dereference(gptr);
if (rp)

ret = f(rp);
rcu_read_unlock();
return ret;

struct route *ins_route(struct route *rp)

{

}

struct route *old_rp;

spin_lock(&route_lock) ;
old_rp = gptr;
rcu_assign_pointer(gptr, rp);
spin_unlock(&route_lock);
return old_rp;

int del_route(void)

{

struct route *old_rp;

spin_lock(&route_lock) ;
old_rp = gptr;
RCU_INIT_POINTER(gptr, NULL);
spin_unlock(&route_lock);
synchronize_rcu();
free(old_rp);

return !'old_rp;

339

respectively.” However, this simple non-preemptible approach is conceptu-
ally complete, and demonstrates that it really is possible to provide read-side
synchronization at zero cost, even in the face of concurrent updates. In
fact, Listing 9.13 shows how reading (access_route()), Figure 9.6’s
insertion (ins_route()) and Figure 9.7’s deletion (del_route()) can
be implemented. (A slightly more capable routing table is shown in
Section 9.5.4.1.)

Quick Quiz 9.28: What is the point of rcu_read_lock() and rcu_read_
unlock() in Listing 9.13? Why not just let the quiescent states speak for
themselves? W

Quick Quiz 9.29: What is the point of rcu_dereference(), rcu_assign_
pointer () and RCU_INIT_POINTER() in Listing 9.13? Why not just use
READ_ONCE(), smp_store_release(), and WRITE_ONCE(), respectively? H

Referring back to Listing 9.13, note that route_lock is used to syn-
chronize between concurrent updaters invoking ins_route() and del_
route (). However, this lock is not acquired by readers invoking access_
route (): Readers are instead protected by the QSBR techniques described
in Section 9.5.1.3.

Note that ins_route () simply returns the old value of gptr, which
Figure 9.6 assumed would always be NULL. This means that it is the
caller’s responsibility to figure out what to do with a non-NULL value, a
task complicated by the fact that readers might still be referencing it for
an indeterminate period of time. Callers might use one of the following
approaches:

1. Use synchronize_rcu() to safely free the pointed-to structure.
Although this approach is correct from an RCU perspective, it arguably
has software-engineering leaky-API problems.

2. Trip an assertion if the returned pointer is non-NULL.

3. Pass the returned pointer to a later invocation of ins_route() to
restore the earlier value.

9 Some toy RCU implementations that handle preempted read-side critical sections are
shown in Appendix B.

340

In contrast, del_route () uses synchronize_rcu() and free() to
safely free the newly deleted data item.

Quick Quiz 9.30: But what if the old structure needs to be freed, but the caller
of ins_route() cannot block, perhaps due to performance considerations or
perhaps because the caller is executing within an RCU read-side critical section?

This example shows one general approach to reading and updating
RCU-protected data structures, however, there is quite a variety of use cases,
several of which are covered in Section 9.5.4.

In summary, it is in fact possible to create concurrent linked data
structures that can be traversed by readers executing the same sequence of
machine instructions that would be executed by single-threaded readers.
The next section summarizes RCU’s high-level properties.

9.5.1.5 RCU Properties

A key RCU property is that reads need not wait for updates. This property
enables RCU implementations to provide low-cost or even no-cost readers,
resulting in low overhead and excellent scalability. This property also allows
RCU readers and updaters to make useful concurrent forward progress.
In contrast, conventional synchronization primitives must enforce strict
mutual exclusion using expensive instructions, thus increasing overhead and
degrading scalability, but also typically prohibiting readers and updaters
from making useful concurrent forward progress.

Quick Quiz 9.31: Doesn’t Section 9.4’s seqlock also permit readers and updaters
to make useful concurrent forward progress? Wl

As noted earlier, RCU delimits readers with rcu_read_lock() and
rcu_read_unlock(), and ensures that each reader has a coherent view of
each object (see Figure 9.7) by maintaining multiple versions of objects
and using update-side primitives such as synchronize_rcu() to ensure
that objects are not freed until after the completion of all readers that
might be using them. RCU uses rcu_assign_pointer() and rcu_
dereference () to provide efficient and scalable mechanisms for publishing
and reading new versions of an object, respectively. These mechanisms

341
20000
18000 |-
16000 -
14000
12000 -
10000 -
8000 [~
6000 -
4000
2000

RCU APl Uses

2000
2005
2010 |-
2015 |-
2020 |-
2025

Year

Figure 9.9: RCU Usage in the Linux Kernel

distribute the work among read and update paths in such a way as to make
read paths extremely fast, using replication and weakening optimizations
in a manner similar to hazard pointers, but without the need for read-side
retries. In some cases, including CONFIG_PREEMPT=n Linux kernels, RCU’s
read-side primitives have zero overhead.

But are these properties actually useful in practice? This question is
taken up by the next section.

9.5.1.6 Practical Applicability

RCU has been used in the Linux kernel since October 2002 [Tor02]. Use
of the RCU API has increased substantially since that time, as can be seen
in Figure 9.9. RCU has enjoyed heavy use both prior to and since its
acceptance in the Linux kernel, as discussed in Section 9.5.5. In short, RCU
enjoys wide practical applicability.

342

The minimal example discussed in this section is a good introduction
to RCU. However, effective use of RCU often requires that you think
differently about your problem. It is therefore useful to examine RCU’s
fundamentals, a task taken up by the following section.

9.5.2 RCU Fundamentals

This section re-examines the ground covered in the previous section, but
independent of any particular example or use case. People who prefer to
live their lives very close to the actual code may wish to skip the underlying
fundamentals presented in this section.

The common use of RCU to protect linked data structure is comprised
of three fundamental mechanisms, the first being used for insertion, the
second being used for deletion, and the third being used to allow readers to
tolerate concurrent insertions and deletions. Section 9.5.2.1 describes the
publish-subscribe mechanism used for insertion, Section 9.5.2.2 describes
how waiting for pre-existing RCU readers enables deletion,!® and Sec-
tion 9.5.2.3 discusses how maintaining multiple versions of recently updated
objects permits concurrent insertions and deletions. Finally, Section 9.5.2.4
summarizes RCU fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

Because RCU readers are not excluded by RCU updaters, an RCU-protected
data structure might change while a reader accesses it. The accessed data
item might be moved, removed, or replaced. Because the data structure
does not “hold still” for the reader, each reader’s access can be thought of as
subscribing to the current version of the RCU-protected data item. For their
part, updaters can be thought of as publishing new versions.
Unfortunately, as laid out in Section 4.3.4.1 and reiterated in Sec-
tion 9.5.1.1, it is unwise to use plain accesses for these publication and
subscription operations. It is instead necessary to inform both the compiler
and the CPU of the need for care, as can be seen from Figure 9.10, which

10 Yes, RCU being what it is, this most fundamental component of RCU is covered not
first, but second.

343

ins_route() access_route()

Nt OK e

Figure 9.10: Publication/Subscription Constraints

illustrates interactions between concurrent executions of ins_route () (and
its caller) and access_route () from Listing 9.13.

The ins_route() column from Figure 9.10 shows ins_route()’s
caller allocating a new route structure, which then contains pre-initialization
garbage. The caller then initializes the newly allocated structure, and then
invokes ins_route () to publish a pointer to the new route structure.
Publication does not affect the contents of the structure, which therefore
remain valid after publication.

The access_route () column from this same figure shows the pointer
being subscribed to and dereferenced. This dereference operation absolutely
must see a valid route structure rather than pre-initialization garbage
because referencing garbage could result in memory corruption, crashes,
and hangs. As noted earlier, avoiding such garbage means that the publish

v2025.12.18a

344

and subscribe operations must inform both the compiler and the CPU of the
need to maintain the needed ordering.

Publication is carried out by rcu_assign_pointer (), which ensures
that ins_route()’s caller’s initialization is ordered before the actual
publication operation’s store of the pointer. In addition, rcu_assign_
pointer () must be atomic in the sense that concurrent readers see either
the old value of the pointer or the new value of the pointer, but not some
mash-up of these two values. These requirements are met by the C11 store-
release operation, and in fact in the Linux kernel, rcu_assign_pointer ()
is defined in terms of smp_store_release (), which is similar to C11
store-release.

Note that if concurrent updates are required, some sort of synchronization
mechanism will be required to mediate among multiple concurrent rcu_
assign_pointer () calls on the same pointer. In the Linux kernel, locking
is the mechanism of choice, but pretty much any synchronization mechanism
may be used. An example of a particularly lightweight synchronization
mechanism is Chapter 8’s data ownership: If each pointer is owned by a
particular thread, then that thread may execute rcu_assign_pointer ()
on that pointer with no additional synchronization overhead.

Quick Quiz 9.32: Wouldn’t use of data ownership for RCU updaters mean that
the updates could use exactly the same sequence of instructions as would the
corresponding single-threaded code? W

Subscription is carried out by rcu_dereference(), which orders
the subscription operation’s load from the pointer is before the derefer-
ence. Similar to rcu_assign_pointer(), rcu_dereference() must
be atomic in the sense that the value loaded must be that from a sin-
gle store, for example, the compiler must not tear the load.!" Unfortu-
nately, compiler support for rcu_dereference() is at best a work in
progress [MWB*17, MRP*17, BM18]. In the meantime, the Linux kernel
relies on volatile loads, the details of the various CPU architectures, coding
restrictions [McK14e], and, on DEC Alpha [Cor02], a memory-barrier in-
struction. However, on other architectures, rcu_dereference () typically

11 That is, the compiler must not break the load into multiple smaller loads, as described
under “load tearing” in Section 4.3.4.1.

345

emits a single load instruction, just as would the equivalent single-threaded
code. The coding restrictions are described in more detail in Section 15.4.2,
however, the common case of field selection (“~>") works quite well.
Software that does not require the ultimate in read-side performance can
instead use C11 acquire loads, which provide the needed ordering and
more, albeit at a cost. It is hoped that lighter-weight compiler support for
rcu_dereference () will appear in due course.

In short, use of rcu_assign_pointer() for publishing pointers and
use of rcu_dereference () for subscribing to them successfully avoids
the “Not OK” garbage loads depicted in Figure 9.10. These two primitives
can therefore be used to add new data to linked structures without disrupting
concurrent readers.

Quick Quiz 9.33: But suppose that updaters are adding and removing multiple
data items from a linked list while a reader is iterating over that same list.
Specifically, suppose that a list initially contains elements A, B, and C, and that
an updater removes element A and then adds a new element D at the end of the
list. The reader might well see {A, B, C, D}, when that sequence of elements
never actually ever existed! In what alternate universe would that qualify as “not
disrupting concurrent readers”??? W

Adding data to a linked structure without disrupting readers is a good
thing, as are the cases where this can be done with no added read-side cost
compared to single-threaded readers. However, in most cases it is also
necessary to remove data, and this is the subject of the next section.

9.5.2.2 Wait For Pre-Existing RCU Readers

The most basic component of RCU is waiting for things to finish. Of course,
there are a great many other ways of waiting for things to finish, including
reference counts, reader-writer locks, events, and so on. The great advantage
of RCU is that it can wait for each of (say) 20,000 different things without
having to explicitly track each and every one of them, and without having to
worry about the performance degradation, scalability limitations, complex
deadlock scenarios, and memory-leak hazards that are inherent in schemes
using explicit tracking.

346

PO()

rcu_read_lock();

I

rl = READ_ONCE(x); Given this ordering

|

r2 = READ_ONCE(y);

|

rcu_read_unlock();

(0==T1)

WRITE_ONCE(x, 1);

{

synchronize_rcu();

!

.... RCU guarantees this ordering (r2 == 0). WRITE_ONCE(y, 1);

P1()

Figure 9.11: RCU Reader and Later Grace Period

In RCU’s case, each of the things waited on is called an RCU read-side
critical section. As noted in Table 9.1, an RCU read-side critical section
starts with an rcu_read_lock() primitive, and ends with a corresponding
rcu_read_unlock() primitive. RCU read-side critical sections can be
nested, and may contain pretty much any code, as long as that code does
not contain a quiescent state. For example, within the Linux kernel, it is
illegal to sleep within an RCU read-side critical section because a context
switch is a quiescent state.!? If you abide by these conventions, you can
use RCU to wait for any pre-existing RCU read-side critical section to
complete, and synchronize_rcu() uses indirect means to do the actual
waiting [DMS*12a, McK13].

The relationship between an RCU read-side critical section and a later
RCU grace period is an if-then relationship, as illustrated by Figure 9.11. If

12 However, a special form of RCU called SRCU [McK06] does permit general sleeping in
SRCU read-side critical sections.

347

P1()

= WRITE_ONCE(X, 1);
i
PO() o ¢
rcu_read_lock(); = synchronize_rcu();
)
2
! :)
L
rl = READ_ONCE(x); | ... RCU guarantees S WRITE_ONCE(y, 1);
r2 = READ_ONCE(y); Given this ordering (r2 == 1) ...
rcu_read_unlock();

Figure 9.12: RCU Reader and Earlier Grace Period

any portion of a given critical section precedes the beginning of a given grace
period, then RCU guarantees that all of that critical section will precede
the end of that grace period. In the figure, PO()’s access to x precedes
P1()’s access to this same variable, and thus also precedes the grace period
generated by P1 () ’s call to synchronize_rcu(). Itis therefore guaranteed
that PO () ’s access to y will precede P1()’s access. In this case, if r1’s final
value is 0, then r2’s final value is guaranteed to also be 0.

Quick Quiz 9.34: What other final values of r1 and r2 are possible in Figure 9.11?
|

The relationship between an RCU read-side critical section and an
earlier RCU grace period is also an if-then relationship, as illustrated by
Figure 9.12. If any portion of a given critical section follows the end of a
given grace period, then RCU guarantees that all of that critical section will
follow the beginning of that grace period. In the figure, PO()’s access to
y follows P1()’s access to this same variable, and thus follows the grace
period generated by P1()’s call to synchronize_rcu(). It is therefore
guaranteed that PO()’s access to x will follow P1()’s access. In this case,
if r2’s final value is 1, then r1’s final value is guaranteed to also be 1.

P1()

WRITE_ONCE(x, 1);

!

rcu_read_lock();

{

rl = READ_ONCE(x); |¢ Given this ordering

¢ \ synchronize_rcu();

r2 = READ_ONCE(y); | ... this can happen

!

rcu_read_unlock();

(rl1==1) ...

(0==TJ)

!

WRITE_ONCE(y, 1);

Figure 9.13: RCU Reader Within Grace Period

Quick Quiz 9.35: What would happen if the order of PO()’s two accesses was
reversed in Figure 9.12? H

Finally, as shown in Figure 9.13, an RCU read-side critical section can
be completely overlapped by an RCU grace period. In this case, r1’s final
value is 1 and r2’s final value is O.

Howeyver, it cannot be the case that r1’s final value is O and r2’s final
value is 1. This would mean that an RCU read-side critical section had
completely overlapped a grace period, which is forbidden (or at the very
least constitutes a bug in RCU). RCU’s wait-for-readers guarantee therefore
has two parts: (1) If any part of a given RCU read-side critical section
precedes the beginning of a given grace period, then the entirety of that
critical section precedes the end of that grace period. (2) If any part of
a given RCU read-side critical section follows the end of a given grace
period, then the entirety of that critical section follows the beginning of
that grace period. This definition is sufficient for almost all RCU-based

349

algorithms, but for those wanting more, simple executable formal models
of RCU are available as part of Linux kernel v4.17 and later, as discussed
in Section 12.3.2. In addition, RCU’s ordering properties are examined in
much greater detail in Section 15.5.3.

Quick Quiz 9.36: What would happen if PO()’s accesses in Figures 9.11-9.13
were stores? W

Although RCU’s wait-for-readers capability really is sometimes used to
order the assignment of values to variables as shown in Figures 9.11-9.13, it
is more frequently used to safely free data elements removed from a linked
structure, as was done in Section 9.5.1. The general process is illustrated by
the following pseudocode:

1. Make a change, for example, remove an element from a linked list.

2. Wait for all pre-existing RCU read-side critical sections to completely
finish (for example, by using synchronize_rcu()).

3. Clean up, for example, free the element that was replaced above.

This more abstract procedure requires a more abstract diagram than
Figures 9.11-9.13, which are specific to a particular litmus test. After all, an
RCU implementation must work correctly regardless of the form of the RCU
updates and the RCU read-side critical sections. Figure 9.14 fills this need,
showing the four possible scenarios, with time advancing from top to bottom
within each scenario. Within each scenario, an RCU reader is represented
by the left-hand stack of boxes and RCU updater by the right-hand stack.

In the first scenario, the reader starts execution before the updater starts
the removal, so it is possible that this reader has a reference to the removed
data element. Therefore, the updater must not free this element until after
the reader completes. In the second scenario, the reader does not start
execution until after the removal has completed. The reader cannot possibly
obtain a reference to the already-removed data element, so this element may
be freed before the reader completes. The third scenario is like the second,
but illustrates that even when the reader cannot possibly obtain a reference
to an element, it is still permissible to defer the freeing of that element
until after the reader completes. In the fourth and final scenario, the reader

rcu_read_lock()

Remove

rcu_read_unlock() |synchronize_rcu()

Free Old Memory

(1) Reader precedes free

Remove

rcu_read_lock() [synchronize_rcu()

Free Old Memory

rcu_read_unlock()

(2) Removal precedes reader

Remove

rcu_read_lock()

synchronize_rcu()

rcu_read_unlock()

Free Old Memory

(3) Reader within grace period

rcu_read_lock()

Remove

synchronize_rcu()

Free Old Memory

rcu_read_unlock() \ BUGH!!

(4) Grace period within reader (BUG!!!)

Figure 9.14: Summary of RCU Grace-Period Ordering Guarantees

351

starts execution before the updater starts removing the data element, but
this element is (incorrectly) freed before the reader completed. A correct
RCU implementation will not allow this fourth scenario to occur. This
diagram thus illustrates RCU’s wait-for-readers functionality: Given a grace
period, each reader ends before the end of that grace period, starts after the
beginning of that grace period, or both, in which case it is wholly contained
within that grace period.

Because RCU readers can make forward progress while updates are
in progress, different readers might disagree about the state of the data
structure, a topic taken up by the next section.

9.5.2.3 Maintain Multiple Versions of Recently Updated Objects

This section discusses how RCU accommodates synchronization-free readers
by maintaining multiple versions of data. Because these synchronization-free
readers provide very weak temporal synchronization, RCU users compensate
via spatial synchronization. Spatial synchronization was discussed in
Chapter 6, and is heavily used in practice to obtain good performance and
scalability. In this section, spatial synchronization will be used to attain a
weak (but useful) form of correctness as well as excellent performance and
scalability.

Figure 9.7 in Section 9.5.1.1 showed a simple variant of spatial synchro-
nization, in which different readers running concurrently with del_route ()
(see Listing 9.13) might see the old route structure or an empty list, but
either way get a valid result. Of course, a closer look at Figure 9.6 shows
that calls to ins_route() can also result in concurrent readers seeing
different versions: Either the initial empty list or the newly inserted route
structure. Note that both reference counting (Section 9.2) and hazard
pointers (Section 9.3) can also cause concurrent readers to see different
versions, but RCU’s lightweight readers make this more likely.

However, maintaining multiple weakly consistent versions can provide
some surprises. For example, consider Figure 9.15, in which a reader is
traversing a linked list that is concurrently updated.!® In the first row of
the figure, the reader is referencing data item A, and in the second row, it

13 RCU linked-list APIs may be found in Section 9.5.3.

352

Reader {A}
Reader {A, B}
Reader {A, B}
. -
Reader {A, B}

Reader {A, B, C,D, E}

s [e}-{clo]

Figure 9.15: Multiple RCU Data-Structure Versions

v2025.12.18a

252
333

advances to B, having thus far seen A followed by B. In the third row, an
updater removes element A and in the fourth row an updater adds element E
to the end of the list. In the fifth and final row, the reader completes its
traversal, having seeing elements A through E.

Except that there was no time at which such a list existed. This situation
might be even more surprising than that shown in Figure 9.7, in which
different concurrent readers see different versions. In contrast, in Figure 9.15
the reader sees a version that never actually existed!

One way to resolve this strange situation is via weaker semanitics. A
reader traversal must encounter any data item that was present during the
full traversal (B, C, and D), and might or might not encounter data items
that were present for only part of the traversal (A and E). Therefore, in this
particular case, it is perfectly legitimate for the reader traversal to encounter
all five elements. If this outcome is problematic, another way to resolve
this situation is through use of stronger synchronization mechanisms, such
as reader-writer locking, or clever use of timestamps and versioning, as
discussed in Section 9.5.4.11. Of course, stronger mechanisms will be
more expensive, but then again the engineering life is all about choices and
tradeofts.

Strange though this situation might seem, it is entirely consistent with
the real world. As we saw in Section 3.2, the finite speed of light cannot be
ignored within a computer system, and it most certainly cannot be ignored
outside of this system. This in turn means that any data within the system
representing state in the real world outside of the system is always and
forever outdated, and thus inconsistent with the real world. Therefore, it is
quite possible that the sequence {A, B, C, D, E} occurred in the real world,
but due to speed-of-light delays was never represented in the computer
system’s memory. In this case, the reader’s surprising traversal would
correctly reflect reality.

As aresult, algorithms operating on real-world data must account for
inconsistent data, either by tolerating inconsistencies or by taking steps to
exclude or reject them. In many cases, these algorithms are also perfectly
capable of dealing with inconsistencies within the system.

The pre-BSD packet routing example laid out in Section 9.1 is a case
in point. The contents of a routing list is set by routing protocols, and

354

these protocols feature significant delays (seconds or even minutes) to avoid
routing instabilities. Therefore, once a routing update reaches a given system,
it might well have been sending packets the wrong way for quite some
time. Sending a few more packets the wrong way for the few microseconds
during which the update is in flight is clearly not a problem because the
same higher-level protocol actions that deal with delayed routing updates
will also deal with internal inconsistencies.

Nor is Internet routing the only situation tolerating inconsistencies. To
repeat, any algorithm in which data within a system tracks outside-of-system
state must tolerate inconsistencies, which includes security policies (often
set by committees of humans), storage configuration, and WiFi access
points, to say nothing of removable hardware such as microphones, headsets,
cameras, mice, printers, and much else besides. Furthermore, the large
number of Linux-kernel RCU API uses shown in Figure 9.9, combined with
the Linux kernel’s heavy use of reference counting and with increasing use
of hazard pointers in other projects, demonstrates that tolerance for such
inconsistencies is more common than one might imagine.

One root cause of this common-case tolerance of inconsistencies is
that single-item lookups are much more common in practice than are full-
data-structure traversals. After all, full-data-structure traversals are much
more expensive than single-item lookups, so developers are motivated to
avoid such traversals. Not only are concurrent updates less likely to affect a
single-item lookup than they are a full traversal, but it is also the case that
an isolated single-item lookup has no way of detecting such inconsistencies.
As aresult, in the common case, such inconsistencies are not just tolerable,
they are in fact invisible.

In such cases, RCU readers can be considered to be fully ordered
with updaters, despite the fact that these readers might be executing the
exact same sequence of machine instructions that would be executed by a
single-threaded program, as hinted on page 299. For example, referring
back to Listing 9.13 on page 338, suppose that each reader thread invokes
access_route () exactly once during its lifetime, and that there is no other
communication among reader and updater threads. Then each invocation
of access_route() can be ordered after the ins_route() invocation
that produced the route structure accessed by line 11 of the listing in

355

access_route() and ordered before any subsequent ins_route() or
del_route() invocation.

In summary, maintaining multiple versions is exactly what enables
the extremely low overheads of RCU readers, and as noted earlier, many
algorithms are unfazed by multiple versions. However, there are algorithms
that absolutely cannot handle multiple versions. There are techniques for
adapting such algorithms to RCU [McK04], for example, the use of sequence
locking described in Section 13.4.2.

Exercises These examples assumed that a mutex was held across the
entire update operation, which would mean that there could be at most two
versions of the list active at a given time.

Quick Quiz 9.37: How would you modify the deletion example to permit more
than two versions of the list to be active? H

Quick Quiz 9.38: How many RCU versions of a given list can be active at any
given time? M

[Quick Quiz 9.39: How can the per-update overhead of RCU be reduced? M]

9.5.2.4 Summary of RCU Fundamentals

This section has described the three fundamental components of RCU-based
linked-structure algorithms:

1. A publish-subscribe mechanism for adding new data featuring
rcu_assign_pointer() for update-side publication and rcu_
dereference () for read-side subscription,

2. A way of waiting for pre-existing RCU readers to finish based on read-
ers being delimited by rcu_read_lock() andrcu_read_unlock()
on the one hand and updaters waiting via synchronize_rcu() or
call_rcu() onthe other (see Section 15.5.3 for a formal description),
and

356

3. Adiscipline of maintaining multiple versions to permit change without
harming or unduly delaying concurrent RCU readers.

Quick Quiz 9.40: How can RCU updaters possibly delay RCU readers, given
that neither rcu_read_lock() nor rcu_read_unlock() spin or block? H

These three RCU components allow data to be updated in the face of
concurrent readers that might be executing the same sequence of machine
instructions that would be used by a reader in a single-threaded imple-
mentation. These RCU components can be combined in different ways to
implement a surprising variety of different types of RCU-based algorithms,
a number of which are presented in Section 9.5.4. However, it is usually
better to work at higher levels of abstraction. To this end, the next section
describes the Linux-kernel API, which includes simple data structures such
as lists.

9.5.3 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its Linux-kernel APL 4

Section 9.5.3.1 explores the relationship between RCU’s API and soft-
ware engineering, Section 9.5.3.2 presents RCU’s wait-to-finish APIs,
Section 9.5.3.3 presents RCU’s publish-subscribe and version-maintenance
APIs, Section 9.5.3.4 presents RCU’s list-processing APIs, Section 9.5.3.5
presents RCU’s diagnostic APIs, and Section 9.5.3.6 describes in which
contexts RCU’s various APIs may be used. Finally, Section 9.5.3.7 presents
concluding remarks.

Readers who are not excited about kernel internals may wish to skip
ahead to Section 9.5.4 on page 378, but preferably after reviewing the next
section covering software-engineering considerations.

9.5.3.1 RCU API and Software Engineering

Readers who have looked ahead to Tables 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, and 9.8
might have noted that the full list of Linux-kernel APIs sports more than 100

14 Userspace RCU’s API is documented elsewhere [MDJ13f].

357

members. This is in sharp (and perhaps dismaying) contrast to the mere six
API members shown in Table 9.1. This situation clearly raises the question
“Why so many???”

This question is answered more thoroughly in the following sections,
but in the meantime the rest of this section summarizes the motivations.

There is a wise old saying to the effect of “To err is human.” This
means that purpose of a significant fraction of the RCU API is to provide
diagnostics, most notably in Table 9.8, but elsewhere as well.

Important causes of human error are the limits of the human brain, for
example, the limited capacity of short-term memory. The toy examples
shown in this book do not stress these limits. This is out of necessity:
Many readers push their cognitive limits while learning new material, so
the examples need to be kept simple.

These examples therefore keep rcu_dereference () invocations in
the same function as the enclosing rcu_read_lock() and rcu_read_
unlock() calls. In contrast, real-world software must frequently invoke
these API members from different functions, and even from different
translation units. The Linux kernel RCU API has therefore expanded to
accommodate lockdep, which allows rcu_dereference() and friends
to complain if it is not protected by rcu_read_lock(). Linux-kernel
RCU also checks for some double-free errors, infinite loops in RCU read-
side critical sections, and attempts to invoke quiescent states within RCU
read-side critical sections.

Another way that real-world software accommodates the limits of human
cognition is through abstraction. The Linux-kernel API therefore includes
members that operate on lists in addition to the pointer-oriented core API of
Table 9.1. The Linux kernel itself also provides RCU-protected hash tables
and search trees.

Operating-systems kernels such as Linux operate near the bottom of the
“iron triangle” of the software stack shown in Figure 2.3, where performance
is critically important. There are thus specialized variants of a number of
RCU APIs for use on fastpaths, for example, as discussed in Section 9.5.3.3,
RCU_INIT_POINTER() may be used in place of rcu_assign_pointer ()
in cases where the RCU-protected pointer is being assigned to NULL or when
that pointer is not yet accessible by readers. Use of RCU_INIT_POINTER ()

358

allows the compiler more leeway in selecting instructions and carrying out
optimizations, thus increasing performance.

On the other hand, when used incorrectly RCU_INIT_POINTER() can
result in silent memory corruption, so please be careful! Yes, in some cases,
the kernel can check for inappropriate use of RCU API members from a
given kernel context, but the constraints of RCU_INIT_POINTER() use are
not yet checkable.

Finally, within the Linux kernel, the aforementioned limits of human
cognition are compounded by the variety and severity of workloads running
on Linux. As of v5.16, this has given rise to no fewer than five flavors of
RCU, each designed to provide different performance, scalability, response-
time, and energy efficiency tradeoffs to RCU readers and writers. These
RCU flavors are the subject of the next section.

9.5.3.2 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that RCU is an
API. For example, the RCU implementation used in the Linux kernel is
summarized by Table 9.2, whose columns show the wait-for-readers portions
of the RCU, “sleepable” RCU (SRCU), Tasks RCU, Tasks RCU Rude, Tasks
RCU Trace, and generic APIs, respectively, Table 9.3, which shows the
full range of RCU read-side markers, Table 9.4, which shows the full range
of SRCU read-side markers, Table 9.5, which shows the full RCU polled
grace-period API, and by Table 9.6, which shows the publish-subscribe
portions of the API [MFW+24].15

If you are new to RCU, you might consider focusing on just one of the
columns in Table 9.2, each of which summarizes one member of the Linux
kernel’s RCU API family. For example, if you are primarily interested in
understanding how RCU is used in the Linux kernel, “RCU” would be the
place to start, as it is used most frequently. On the other hand, if you want
to understand RCU for its own sake, “Tasks RCU Rude” has the simplest
API. You can always come back for the other columns later.

15 This citation covers v6.10 and later. Documetation for earlier versions of the Linux-kernel
RCU API may be found elsewhere [McK08e, McK14f, McK19b].

59

VIN
SPUODISI[[IW JO SO T

PU023SOINL-qNS
53559008 [290[-dD

pousad 2013 2oen syser DY ON

()eoeI1 S¥SR] I8TITRG MO

()®orI3 S¥SEI NOITTRD

()d8 nox"seTTdur 90RIZ MO
()@oeI1”SYSRI NOI 9ZTUOIYOULS
(®oe13”syse3 nox)prendpadoos

() (e0®13”s}sRI NOI)prEn3
()@oeI3"¥o0oTUN peaI MOX
()@oeI Y20 T PRSI NOI

VIN
SPUOSSIIIIN

PUODASOIDIUI-GNS

(U=1dWaTdd
UO 991J) S3SS008 [8I0[-N1dD

uondwoaaid 1ou Surydo[q 1oyIaN

()opnI~syse) IeTIIRq MOI

()epni~sysea MOI TTEd

()ePnI~sYse] NOI”eZTUOIYOULS

-apod
Jo suor3a1 pajqesip-uonduwaaig

VIN
RIGREN

PU023SOINW-qNS
2214

YoNMS 1X3)u00 K1ejunjoa oN

()s¥sea~IeTITRq MO

()susEITMOITTTRD
()3TnU NOI"eZTUOIYOULS

() s¥se3 noI~ezTuUOIYOULS

“$)s®) A[PI-UoU
UI YOIIMS 1X2IU0D KTRIUNOA

SPUOOISOIOIA
SPUODISIIIT

PUOSSOIIW-NS
SIOLLIRq

Ksowaw ‘suononnsut spdurg
3001387 NOIS dwes

M ()NOIST8ZTUOIYDOULS ON

()noxs~ezruoIyOULS "93e3S TTOod
()noas~ezruoxyouks TTod 3IR3S
()noas~ezTuoIyouks eqeqs 1e8

()IeTIIRq MOIS

()noas~TTed

{)Pe3Tpadxe NOISTZTUOIYOULS
()noas~ezTUOIYOULS

(-a10w 10J 6 d]qeL, 39S)
()¥ooTun"pesi moIs
()¥ooT pesi mois
()3on13s noas"dnues o
()3on138 OIS TATUT
()NOY¥S™OILYLS ANTAAA
() ND¥S™ANIAHA

SPUOJASOIIUI JO SO
SPUOIISI[IW JO SOT

PUODASOIDIUI-GNS

(U=LdWIIYd U0
() I8TIIRQ) SISSAIIR [IO[-NdD

(uondwiaaid Kjuo) Supypolq oN

NOY™ A9 AAVSAIAL ™ GVIS
()desTsaySTw nox esxzay
()noax"e0IIAY
()deeTs3ydtu noI 901Iy
()nox~eexzy
()nox~ezTUOIYoULS PUOD
()nox~ezTuoIydUAS 93RS 308
(*a10W 10§ ¢'6 IR, 23S)
()nox~eztuoayouks e3eas Trod
()nox~szruoayouks TTod 3relS
()nox~ezTuoIyoULS “83elS 308

()I8TITRq MOI

() £xany nox"TTeD

i QmoaTTTed

()pe3Tpadxa noI"8ZTUOIYOULS
()38uU”8ZTUOIYOUAS
()nox~ezTuoIyOULS

(-a10W 10§ ¢°6 AQEL, 23S)
i ()%ooTun"pesr nox
i ()¥o0T peer mOI

Kdoudyey porrad-aoeis
panpadxy

Kdoudge| porrad-aders)
PBIYIA0 Jpis-ajepdn
snouoyuASY

PEIYIIN0 IPIS peAY

SJUIRI)SUOD IPIS PEAY
Kxowrdur dyes-ddAy,

(Krowdur 33.1y)
saanuLid apis-ajepdn
(es / apenrun)
saapmud apis-ayepdn

(parred)

saapmuad apis-ayepdn
(Seq[E 10§ 1Em)
saanmuLid apis-ajepdn
(peqred

/ SnOUOIYPUASE)
saaptud apis-ayepdn

(SnouoayduAs)
saanurid apis-ajepdn

sIMjIRW
UORIIS-[EINLID
apis-peay

dnues)
pue vonezienIuY

sweidoid 44g
91qedadys 103101 PIRIL, 1Y SASEL

saurjodwen Suroen
SE1-a[pI 921 IPMY 1DY SHSEL,

saurjodwren
Suroen 991 :NDY SISEL

s1opear Suidaals :NDJUS

[PuIsHO :N0Y

SIdV USTUL]-03-1eM 1D *T°6 ddBL

360

Table 9.3: RCU Markers for Read-Side Critical Sections

Acquisition Release

Comments

rcu_read_lock()

guard(rcu) ()

scoped_guard (rcu)
rcu_read_lock_bh()
rcu_read_lock_sched()
rcu_read_lock_sched_notrace()
local_bh_disable()
preempt_disable() preempt_enable ()
local_irq_save()

rcu_read_unlock()

local_irq_restore()

RCU reader to end of enclosing scope.
RCU reader for following statement.

rcu_read_unlock_bh()
rcu_read_unlock_sched ()
rcu_read_unlock_sched_notrace()
local_bh_enable()

And anything else that disables bottom halves.
And anything else that disables preemption.
And anything else that disables interrupts.

Table 9.4: SRCU Markers for Read-Side Critical Sections

Acquisition Release

Comments

srcu_read_lock()

guard(srcu) (&my_srcu)
scoped_guard(srcu, &my_srcu)
srcu_read_lock_nmisafe()
srcu_read_lock_notrace()
srcu_down_read ()

srcu_read_unlock()

SRCU reader to end of enclosing scope.
SRCU reader for following statement.

srcu_read_unlock_nmisafe()
srcu_read_unlock_notrace()
srcu_down_read ()

Table 9.5: RCU Polled Update-Side Primitives

Compressed State / Full State

Comments

get_completed_synchronize_rcu()
get_completed_synchronize_rcu_full ()
get_state_synchronize_rcu()
get_state_synchronize_rcu_full()
start_poll_synchronize_rcu()
start_poll_synchronize_rcu_full()
start_poll_synchronize_rcu_expedited()
start_poll_synchronize_rcu_expedited_full()
poll_state_synchronize_rcu()
poll_state_synchronize_rcu_full()
cond_synchronize_rcu O
cond_synchronize_rcu_full()
cond_synchronize_rcu_expedited()
cond_synchronize_rcu_expedited_full()
NUM_ACTIVE_RCU_POLL_OLDSTATE
NUM_ACTIVE_RCU_POLL_OLDSTATE
same_state_synchronize_rcu()
same_state_synchronize_rcu_full()

Return always-completed state.
Return state for grace-period completion.

Return state for grace-period completion and start a grace
period if needed.

Return state for grace-period completion and start an
expedited grace period if needed.

Return true if state’s grace period has ended.

‘Wait (if needed) for state’s grace period to end.
Expedited wait (if needed) for state’s grace period to end.
Maximum number of states corresponding to in-flight

grace periods.
Are two states equivalent?

361

If you are already familiar with RCU, these tables can serve as a useful
reference.

Quick Quiz 9.41: Why do some of the cells in Table 9.2 have exclamation marks
(“!37)? .

The “RCU” column corresponds to the consolidation of the three
Linux-kernel RCU implementations [McK19¢c, McK19a], in which RCU
read-side critical sections start with rcu_read_lock () and end with rcu_
read_unlock(). These critical sections can also use APIs in Table 9.3,
including rcu_read_lock_bh(), rcu_read_lock_sched(), and rcu_
read_unlock_bh(), or rcu_read_unlock_sched(). In addition, any
region of code that disables bottom halves, interrupts, or preemption
also acts as an RCU read-side critical section. RCU read-side critical
sections may be nested.'® The corresponding synchronous update-side
primitives, synchronize_rcu() and synchronize_rcu_expedited(),
along with their synonym synchronize_net (), wait for any type of
currently executing RCU read-side critical sections to complete. The
length of this wait is known as a “grace period”, and synchronize_rcu_
expedited() is designed to reduce grace-period latency at the expense of
increased CPU overhead and IPIs. The asynchronous update-side primitive,
call_rcu(), invokes a specified function with a specified argument after
a subsequent grace period. For example, call_rcu(p,f); will result in
the “RCU callback” £ (p) being invoked after a subsequent grace period.
Kernels built with CONFIG_RCU_LAZY=y delay grace periods that would
otherwise be started immediately by call_rcu() to be delayed by up to
several seconds. Where such delays are unacceptable, call_rcu_hurry ()
can be used to start grace periods immediately. There are situations,
such as when unloading a Linux-kernel module that uses call_rcu() or
call_rcu_hurry(), when it is necessary to wait for all outstanding RCU
callbacks to complete [McKO07e]. The rcu_barrier () primitive does this
job.

Quick Quiz 9.42: How do you prevent a huge number of RCU read-side critical
sections from indefinitely blocking a synchronize_rcu() invocation? H

16 Note well the RAII variants provided by guard (rcu) () and scoped_guard (rcu).

362

Quick Quiz 9.43: The synchronize_rcu() API waits for all pre-existing
interrupt handlers to complete, right? H

Quick Quiz 9.44: Given that any region of code that disables interrupts acts
as an RCU read-side critical section, do atomic operations and single machine
instructions also act as tiny RCU read-side critical sections?

Quick Quiz 9.45: What is the difference between synchronize_rcu() and
rcu_barrier()? M

The synchronize_rcu() and call_rcu() families of APIs are easy
to use, with queueing, batching, and wakeups provided automatically for the
user. However, there are situations where this ease of use gets in the way,
for example, when a cache of RCU-protected objects might be subject to
reuse during the grace period that otherwise would have allowed them to be
freed. Although this can be handed through careful use of flags that interact
with the RCU callback queued by call_rcu(), this can be inconvenient
and can waste CPU times due to the overhead of the doomed call_rcu()
invocations.

In these cases, RCU’s polled grace-period primitives can be helpful.
The get_state_synchronize_rcu() and start_poll_synchronize_
rcu() functions return a grace-period state “cookie” that encapsulates the
grace-period state after the completion of a later grace period. Once
such a later grace period ends, the poll_state_synchronize_rcu()
will return true. There are quite a few additional functions in RCU’s
polled grace period API. For more information on them, including example
code, see slides 34 and later of the 2024 LSF/MM presentation on this
topic [McK24].!”

Finally, RCU may be used to provide type-safe memory [GC96], as
described in Section 9.5.4.5. In the context of RCU, type-safe memory
guarantees that a given data element will not change type during any RCU
read-side critical section that accesses it. To make use of RCU-based type-
safe memory, pass SLAB_TYPESAFE_BY_RCU to kmem_cache_create().

17 These functions’ kernel-doc headers in the Linux-kernel source code can also be quite
helpful.

363

The “SRCU” column in Table 9.2 displays a specialized RCU API
that permits general sleeping in SRCU read-side critical sections [McKO06]
delimited by srcu_read_lock() and srcu_read_unlock(). However,
unlike RCU, SRCU’s srcu_read_lock() returns a value that must be
passed into the corresponding srcu_read_unlock(). This difference is
due to the fact that the SRCU user allocates an srcu_struct for each
distinct SRCU usage, so that there is no convenient place to store a per-
task reader-nesting count. (Keep in mind that although the Linux kernel
provides dynamically allocated per-CPU storage, there is not yet dynamically
allocated per-task storage.) SRCU read-side critical sections can also be
marked by the APIs shown in Table 9.4, again noting the new RAII variants.

A given srcu_struct structure may be defined as a global variable
with DEFINE_SRCU () if the structure must be used in multiple translation
units, or with DEFINE_STATIC_SRCU() otherwise. For example, DEFINE_
SRCU (my_srcu) would create a global variable named my_srcu that could
be used by any file in the program. Alternatively, an srcu_struct structure
may be either an on-stack variable or a dynamically allocated region of
memory. In both of these non-global-variable cases, the memory must be
initialized using init_srcu_struct () prior to its first use and cleaned up
using cleanup_srcu_struct () after its last use (but before the underlying
storage disappears).

However they are created, these distinct srcu_struct structures
prevent SRCU read-side critical sections from blocking unrelated
synchronize_srcu() and synchronize_srcu_expedited() invoca-
tions. Of course, use of either synchronize_srcu() or synchronize_
srcu_expedited() within an SRCU read-side critical section can result
in self-deadlock, so should be avoided (and which is checked for by
lockdep in v6.4 and later). As with RCU, SRCU’s synchronize_srcu_
expedited () decreases grace-period latency compared to synchronize_
srcu(), but at the expense of increased CPU overhead. Also as
with RCU, there are get_state_synchronize_srcu(), start_poll_
synchronize_srcu(), and poll_state_synchronize_srcu() func-
tions that permit polling of SRCU grace-period APIs.

Quick Quiz 9.46: Under what conditions can synchronize_srcu() be safely
used within an SRCU read-side critical section? W

364

Similar to normal RCU, self-deadlock can be avoided using the asynchro-
nous call_srcu() function. However, special care must be taken when
using call_srcu() because a single task could register SRCU callbacks
very quickly. Given that SRCU readers can block for an arbitrarily long time,
this could consume an arbitrarily large quantity of memory. In contrast,
given the synchronous synchronize_srcu() interface, a given task must
finish waiting for a given grace period before it can start waiting for the next
one.

Also similar to RCU, there is an srcu_barrier () function that waits
for all prior call_srcu() callbacks to be invoked.

In other words, SRCU compensates for its extremely weak forward-
progress guarantees by permitting the developer to restrict its scope.

The “Tasks RCU” column in Table 9.2 displays a specialized RCU API
that mediates freeing of the trampolines used in Linux-kernel tracing. These
trampolines are used to transfer control from a point in the code being traced
to the code doing the actual tracing. It is of course necessary to ensure that
all code executing within a given trampoline has finished before freeing that
trampoline.

Changes to the code being traced are typically limited to a single jump
or call instruction, and thus cannot accommodate the sequence of code
required to implement rcu_read_lock() and rcu_read_unlock(). Nor
can the trampoline contain these calls to rcu_read_lock() and rcu_
read_unlock(). To see this, consider a CPU that is just about to start
executing a given trampoline. Because it has not yet executed the rcu_
read_lock(), that trampoline could be freed at any time, which would
come as a fatal surprise to this CPU. Therefore, trampolines cannot be
protected by synchronization primitives executed in either the traced code
or in the trampoline itself. Which does raise the question of exactly how the
trampoline is to be protected.

The key to answering this question is to note that trampoline code never
contains code that either directly or indirectly does a voluntary context
switch. This code might be preempted, but it will never directly or indirectly
invoke schedule(). This suggests a variant of RCU having voluntary
context switches and idle execution as its only quiescent states. This variant
is Tasks RCU.

365

Tasks RCU is unusual in having no read-side marking functions, which is
good given that its main use case has nowhere to put such markings. Instead,
calls to schedule () serve directly as quiescent states, but only those calls
to schedule () that correspond to voluntary context switches. Updates can
use synchronize_rcu_tasks () to wait for all pre-existing trampoline
execution to complete, or they can use its asynchronous counterpart, call_
rcu_tasks(). There is also an rcu_barrier_tasks() that waits for
completion of callbacks corresponding to all prior invocations of call_
rcu_tasks(). There is no synchronize_rcu_tasks_expedited()
because there has not yet been a request for it, though implementing a useful
variant of it would not be free of challenges.

Quick Quiz 9.47: In a kernel built with CONFIG_PREEMPT_NONE=y, won’t
synchronize_rcu() wait for all trampolines, given that preemption is disabled
and that trampolines never directly or indirectly invoke schedule()? H

The “Tasks RCU Rude” column provides a more effective variant of the
toy implementation presented in Section 9.5.1.4. This variant causes each
CPU to execute a context switch, so that any voluntary context switch or any
preemptible region of code can serve as a quiescent state. The Tasks RCU
Rude variant uses the Linux-kernel workqueues facility to force concurrent
context switches, in contrast to the serial CPU-by-CPU approach taken by
the toy implementation. The API mirrors that of Tasks RCU, including the
lack of explicit read-side markers.

Finally, the “Tasks RCU Trace” column provides an RCU implementation
with functionality similar to that of SRCU, except with much faster read-side
markers.'® However, this speed is a consequence of the fact that these
markers do not execute memory-barrier instructions, which means that
Tasks RCU Trace grace periods must often send IPIs to all, thus degrading
real-time response. Nevertheless, in the absence of readers, the resulting
grace-period latency is reasonably short, rivaling that of RCU.

18 And thus is unusual for the Tasks RCU family due to having explicit read-side markers!

Table 9.6: RCU Publish-Subscribe and Version Maintenance APIs

366

Category

Primitives

Overhead

Pointer publish

rcu_assign_pointer()
rcu_replace_pointer()
rcu_pointer_handoff ()
unrcu_pointer ()
RCU_INIT_POINTER()
RCU_POINTER_INITIALIZER()

Memory barrier

Memory barrier (two of them on Alpha)
Simple instructions

Simple instructions

Simple instructions

Compile-time constant

Pointer subscribe (traversal)

rcu_access_pointer ()
rcu_dereference ()
rcu_dereference_check()
rcu_dereference_bh()
rcu_dereference_bh_check()
rcu_dereference_sched()
rcu_dereference_sched_check()
rcu_dereference_protected()
rcu_dereference_raw()
rcu_dereference_raw_check()

Simple instructions

Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)
Simple instructions

Simple instructions (memory barrier on Alpha)
Simple instructions (memory barrier on Alpha)

SRCU pointer subscribe (traversal)

srcu_dereference ()
srcu_dereference_check()
srcu_dereference_notrace()

Simple instructions
Simple instructions
Simple instructions

9.5.3.3 RCU has Publish-Subscribe and Version-Maintenance APIs

Fortunately, the RCU publish-subscribe and version-maintenance primitives
shown in Table 9.6 apply to all of the variants of RCU discussed above.
This commonality can allow more code to be shared, and reduces API
proliferation. The original purpose of the RCU publish-subscribe APIs was
to bury memory barriers into these APIs, so that Linux kernel programmers
could use RCU without needing to become expert on the memory-ordering
models of each of the 20+ CPU families that Linux supports [SprO1].

These primitives operate directly on pointers, and are useful for creating
RCU-protected linked data structures, such as RCU-protected arrays and
trees. The special case of linked lists is handled by a separate set of APIs
described in Section 9.5.3.4.

The first category publishes pointers to new data items. The rcu_
assign_pointer () primitive ensures that any prior initialization remains
ordered before the assignment to the pointer on weakly ordered machines.
The rcu_replace_pointer() primitive updates the pointer just like
rcu_assign_pointer() does, but also returns the previous value, just
like rcu_dereference_protected() (see below) would, including the

367

lockdep expression. This replacement is convenient when the updater must
both publish a new pointer and free the structure referenced by the old
pointer.

Quick Quiz 9.48: Normally, any pointer subject to rcu_dereference () must
always be updated using one of the pointer-publish functions in Table 9.6, for
example, rcu_assign_pointer().
What is an exception to this rule? Wl

Quick Quiz 9.49: Are there any downsides to the fact that these traversal and
update primitives can be used with any of the RCU API family members? W

The rcu_pointer_handoff () primitive simply returns its sole argu-
ment, but is useful to tooling checking for pointers being leaked from RCU
read-side critical sections. Use of rcu_pointer_handoff () indicates to
such tooling that protection of the structure in question has been handed off
from RCU to some other mechanism, such as locking or reference counting.

The RCU_INIT_POINTER() macro can be used to initialize RCU-
protected pointers that have not yet been exposed to readers, or alternatively,
to set RCU-protected pointers to NULL. In these restricted cases, the
memory-barrier instructions provided by rcu_assign_pointer () are not
needed. Similarly, RCU_POINTER_INITIALIZER() provides a GCC-style
structure initializer to allow easy initialization of RCU-protected pointers in
structures.

The second category subscribes to pointers to data items, or, alternatively,
safely traverses RCU-protected pointers. Again, simply loading these
pointers using C-language accesses could result in seeing pre-initialization
garbage in the pointed-to data. Similarly, loading these pointer by any
means outside of an RCU read-side critical section could result in the
pointed-to object being freed at any time. However, if the pointer is merely
to be tested and not dereferenced, the freeing of the pointed-to object is
not necessarily a problem. In this case, rcu_access_pointer() may
be used. Normally, however, RCU read-side protection is required, and
so the rcu_dereference () primitive uses the Linux kernel’s lockdep
facility [CorO6a] to verify that this rcu_dereference() invocation is
under the protection of rcu_read_lock(), srcu_read_lock(), or some
other RCU read-side marker. In contrast, the rcu_access_pointer ()

368

L> next next next next |—

—| prev prev prev prev e

Figure 9.16: Linux Circular Linked List (1ist)

primitive does not involve lockdep, and thus will not provoke lockdep
complaints when used outside of an RCU read-side critical section.

Another situation where protection is not required is when update-side
code accesses the RCU-protected pointer while holding the update-side
lock. The rcu_dereference_protected() API member is provided for
this situation. Its first parameter is the RCU-protected pointer, and the
second parameter takes a lockdep expression describing which locks must
be held in order for the access to be safe. Code invoked both from readers
and updaters can use rcu_dereference_check(), which also takes a
lockdep expression, but which may also be invoked from read-side code
not holding the locks. In some cases, the lockdep expressions can be very
complex, for example, when using fine-grained locking, any of a very large
number of locks might be held, and it might be quite difficult to work out
which applies. In these (hopefully rare) cases, rcu_dereference_raw()
provides protection but does not check for being invoked within a reader
or with any particular lock being held. The rcu_dereference_raw_
notrace() API member acts similarly, but cannot be traced, and may
therefore be safely used by tracing code.

Although pretty much any linked structure can be accessed by manipu-
lating pointers, higher-level structures can be quite helpful. The next section
therefore looks at various sorts of RCU-protected linked lists used by the
Linux kernel.

369

5]

Figure 9.17: Linux Linked List Abbreviated

| first l—» next \ next \ next
*_ pprev pprev pprev
A B C

Figure 9.18: Linux Linear Linked List (hlist)

9.5.3.4 RCU has List-Processing APIs

Although rcu_assign_pointer() and rcu_dereference() can in the-
ory be used to construct any conceivable RCU-protected data structure,
in practice it is often better to use higher-level constructs. Therefore, the
rcu_assign_pointer () and rcu_dereference () primitives have been
embedded in special RCU variants of Linux’s list-manipulation API. Linux
has four variants of doubly linked list, the circular struct list_head
and the linear struct hlist_head/struct hlist_node, struct
hlist_nulls_head/struct hlist_nulls_node, and struct hlist_
bl_head/struct hlist_bl_node pairs. The former is laid out as shown
in Figure 9.16, where the green (leftmost) boxes represent the list header
and the blue (rightmost three) boxes represent the elements in the list. This
notation is cumbersome, and will therefore be abbreviated as shown in
Figure 9.17, which shows only the non-header (blue) elements.

Linux’s hlist'? is a linear list, which means that it needs only one
pointer for the header rather than the two required for the circular list,
as shown in Figure 9.18. Thus, use of hlist can halve the memory
consumption for the hash-bucket arrays of large hash tables. As before,
this notation is cumbersome, so hlist structures will be abbreviated in the
same way list_head-style lists are, as shown in Figure 9.17.

19 The “h” stands for hashtable, in which it reduces memory use by half compared to
Linux’s double-pointer circular linked list.

370

A variant of Linux’s hlist, named hlist_nulls, provides multiple
distinct NULL pointers, but otherwise uses the same layout as shown in
Figure 9.18. In this variant, a ->next pointer having a zero low-order bit
is considered to be a pointer. However, if the low-order bit is set to one,
the upper bits identify the type of NULL pointer. This type of list is used to
allow lockless readers to detect when a node has been moved from one list
to another. For example, each bucket of a hash table might use its index
to mark its NULL pointer. Should a reader encounter a NULL pointer not
matching the index of the bucket it started from, that reader knows that
an element it was traversing was moved to some other bucket during the
traversal, taking that reader with it. The reader can use the is_a_nulls()
function (which returns true if passed an hlist_nulls NULL pointer) to
determine when it reaches the end of a list, and the get_nulls_value ()
function (which returns its argument’s NULL-pointer identifier) to fetch the
type of NULL pointer. When get_nulls_value () returns an unexpected
value, the reader can take corrective action, for example, restarting its
traversal from the beginning.

Quick Quiz 9.50: But what if an hlist_nulls reader gets moved to some other
bucket and then back again? H

More information on hlist_nulls is available in the Linux-kernel
source tree, with helpful example code providedinthe rculist_nulls.rst
file (rculist_nulls.txt in older kernels).

Another variant of Linux’s h1ist incorporates bit-locking, and is named
hlist_bl. This variant uses the same layout as shown in Figure 9.18, but
reserves the low-order bit of the head pointer (“first” in the figure) to lock
the list. This approach also reduces memory usage, as it allows what would
otherwise be a separate spinlock to be stored with the pointer itself.

The API members for these linked-list variants are summarized in Ta-
ble 9.7. More information is available in the Documentation/RCU directory
of the Linux-kernel source tree and at Linux Weekly News [MFW*24].

However, the remainder of this section expands on the use of 1ist_
replace_rcu(), given that this APl member gave RCU its name. This
API member is used to carry out more complex updates in which an element
in the middle of the list having multiple fields is atomically updated, so that

371

()MPI~TeP Ta72STTY

()MOIT4SITF 4087 TATISTIY
()MoI"pesy ppe Tq ASTTY

(OnOL”3SITF TQTISTIY

()nox~£13us yoee 103 IqTISTTY

opouTTqTISITY 3ONIIS
pesy 1q 3STTY 3ONI3S

()MOITITUT ToP STTIRU ISTIY
()MOITTepTSTINU 3STTY

()exeI PPR STIAU ISTTY
()noI"TTel PPR STINU ISTTY
()noa7peey ppe STIAU ISTTY

()noa”3xeuTSTINU 3STTY
()OIT3SITF STINU 3STTY

()eFes £1qusyoes I0F STTNU ASTTY
()nox~£x3us Yoo I0FTSTINU ISTTY

opou”sSTINU 3STTY 3ONI3S
pesy STINU 3STTY 30NI3S

()nox~spesy dens”s3isTTq

(Onox~ecerdex3sTIY

()MoI74TUT T [8PTASTIY
()m2a17TepPT2STIY

()OI~ TTRITPPRTISTIY
()noI”peey ppe ISTTU
()moI7puUTYeq PPE ISTIY
()nox"81038q PPR ISTTY

()nox~aexdd asTTY
()noaT3xX8UTISTIY
()MOITISITI ISTIY

()nox woxy~£13usTyYOeL 10 ASTTY

()Uq nox"enuT1uod”£I3Us Ydes I0F ASTTY

()MOI"enuT3U0d " AI3USTYORS " I0FISTTY

(Onoxs~A1jus T yoes 103 3STIY

()eorIj0ou NOI"£I3U8 YORS I0FTASTTY
()Uq oI~ £I13us Yoes I0F ASTTY
()noI"£13us yoRS I0FTISTTY

opouTasSTIY 10o0I3S
PeaY 3STTY 30NI3S

()mox"3TuUT TTR3 90TTdsTasTT
(Onox"3TuT 20TTdsT3STT
1ds

(Onox"eoerdex 3sTT

ejday

()M2I~TepTASTT
APPA

()nox"TTe3 PPeTISTT
()noI"ppeTasTT

PPV

()nox~TTRI 3STT
()nox”TInuU 107 3XeU 3STT
()MoI"1X8UT QST

()nOI T TINU I0T3SITF 3STT
()ssoTHo0T £13Us™3STT
(Onox"£13usTasTT

[es1aAe) asimdag

()nox " woxy~£I3us yoes 10 ASTT
()MOI"enuUT3U0d " AI3US YORS " I0FTASTT

[BSIIART) JWINSY

()noxs™£1jus yoes 103 ASTT
()sso 20T £13us yoes 103 2STT
()nox~£13Us yoeS " I03T3STT

[esIdART) [0]
()NdY¥~ayEH ISIT LINI
uonezenIuf

Peay 3STT 30NIIS
saanjonng

Bunyoof 1q s
Is1[payu1] A[qnop aeaur :TqQTISTIY

Supyrew jo snq ¢
o1 dn yim ‘1ayutod TN payIew Yim
IS1[payUI[K]qnop Jeaur] :STTRU"ISTTY

18I pauIf AIqnop Jeaur :38¥TY

ISI[payuI] AIqnop Jenony :38¥T

SIAV ISTT Po109101d-NDY :L°6 dIqeL

372

a given reader sees either the old set of values or the new set of values, but
not a mixture of the two sets. For example, each node of a linked list might
have integer fields ->a, ->b, and ->c, and it might be necessary to update a
given node’s fields from 5, 6, and 7 to 5, 2, and 3, respectively.

The code implementing this atomic update is straightforward:

15| q = kmalloc(sizeof (*p), GFP_KERNEL);

16 | *q = *p;
171 g->b = 2;
18 q->c = 3;

19 | list_replace_rcu(&p->list, &q->list);
20 | synchronize_rcu();
21 | kfree(p);

The following discussion walks through this code, using Figure 9.19 to
illustrate the state changes. The triples in each element represent the values
of fields ->a, ->b, and ->c, respectively. The red-shaded elements might
be referenced by readers, and because readers do not synchronize directly
with updaters, readers might run concurrently with this entire replacement
process. Please note that backwards pointers and the link from the tail to
the head are omitted for clarity.

The initial state of the list, including the pointer p, is the same as for the
deletion example, as shown on the first row of the figure.

The following text describes how to replace the 5,6,7 element with
5,2,3 in such a way that any given reader sees one of these two values.

Line 15 allocates a replacement element, resulting in the state as shown
in the second row of Figure 9.19. At this point, no reader can hold a
reference to the newly allocated element (as indicated by its green shading),
and it is uninitialized (as indicated by the question marks).

Line 16 copies the old element to the new one, resulting in the state as
shown in the third row of Figure 9.19. The newly allocated element still
cannot be referenced by readers, but it is now initialized.

Line 17 updates q—>b to the value “2”, and line 18 updates q->c to the
value “3”, as shown on the fourth row of Figure 9.19. Note that the newly
allocated structure is still inaccessible to readers.

Now, line 19 does the replacement, so that the new element is finally
visible to readers, and hence is shaded red, as shown on the fifth row of

[]
I N g I

list_replace_rcu()

1

Figure 9.19: RCU Replacement in Linked List

v2025.12.18a

373

374

Figure 9.19. At this point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5, 6,7 element (which is therefore now
shaded yellow), but new readers will instead see the 5,2, 3 element. But
any given reader is guaranteed to see one set of values or the other, not a
mixture of the two.

After the synchronize_rcu() on line 20 returns, a grace period will
have elapsed, and so all reads that started before the 1ist_replace_rcu()
will have completed. In particular, any readers that might have been holding
references to the 5,6,7 element are guaranteed to have exited their RCU
read-side critical sections, and are thus prohibited from continuing to hold a
reference. Therefore, there can no longer be any readers holding references
to the old element, as indicated its green shading in the sixth row of
Figure 9.19. As far as the readers are concerned, we are back to having a
single version of the list, but with the new element in place of the old.

After the kfree () on line 21 completes, the list will appear as shown
on the final row of Figure 9.19.

Despite the fact that RCU was named after the replacement case,
the vast majority of RCU usage within the Linux kernel relies on the
simple independent insertion and deletion, as was shown in Figure 9.15 in
Section 9.5.2.3.

Quick Quiz 9.51: Why doesn’t Table 9.7 include additional list-initialization
APIs such as INIT_HLIST_HEAD()? H

The next section looks at APIs that assist developers in debugging their
code that makes use of RCU.

9.5.3.5 RCU Has Diagnostic APIs

Table 9.8 shows RCU’s diagnostic APIs.

The __rcu tag marks an RCU-protected pointer, for example,
“struct foo __rcu *p;”. Pointers that might be passed to rcu_
dereference() can be marked, but pointers holding values returned
from rcu_dereference () should not be. Providing these markings on
variables, structure fields, function parameters, and return values allows
the Linux kernel’s sparse tool to detect situations where RCU-protected
pointers are incorrectly accessed using plain C-language loads and stores.

375

Table 9.8: RCU Diagnostic APIs

Category Primitives

Mark RCU pointer __rcu

Debug-object support init_rcu_head()
destroy_rcu_head()
init_rcu_head_on_stack()
destroy_rcu_head_on_stack()

Stall-warning control rcu_cpu_stall_reset()

Callback checking rcu_head_init ()
rcu_head_after_call_rcu()

lockdep support rcu_read_lock_held()
rcu_read_lock_bh_held()
rcu_read_lock_sched_held()
srcu_read_lock_held()
rcu_is_watching()
RCU_LOCKDEP_WARN ()
rcu_sleep_check()

Debug-object support is automatic for any rcu_head structures that
are part of a structure obtained from the Linux kernel’s memory allocators,
but those building their own special-purpose memory allocators can use
init_rcu_head() and destroy_rcu_head() at allocation and free time,
respectively. Those using rcu_head structures allocated on the function-
call stack (it happens!) may use init_rcu_head_on_stack() before
first use and destroy_rcu_head_on_stack() after last use, but before
returning from the function. Debug-object support allows detection of bugs
involving passing the same rcu_head structure to call_rcu() and friends
in quick succession, which is the call_rcu() counterpart to the infamous
double-free class of memory-allocation bugs.

Stall-warning control is provided by rcu_cpu_stall_reset (), which
allows the caller to suppress RCU CPU stall warnings for the remainder of
the current grace period. RCU CPU stall warnings help pinpoint situations
where an RCU read-side critical section runs for an excessive length of time,

376

and it is useful for things like kernel debuggers to be able to suppress them,
for example, when encountering a breakpoint.

Callback checking is provided by rcu_head_init () and rcu_head_
after_call_rcu(). The former is invoked on an rcu_head structure
before it is passed to call_rcu(), and then rcu_head_after_call_
rcu() will check to see if the callback has been invoked with the specified
function.

Support for lockdep [CorO6a] includes rcu_read_lock_held(),rcu_
read_lock_bh_held(), rcu_read_lock_sched_held(), and srcu_
read_lock_held(), each of which returns true if invoked within the
corresponding type of RCU read-side critical section.

Quick Quiz 9.52: Why isn’t there a rcu_read_lock_tasks_held() for Tasks
RCU? H

Because rcu_read_lock() cannot be used from the idle loop, and
because energy-efficiency concerns have caused the idle loop to become
quite ornate, rcu_is_watching() returns true if invoked in a context
where use of rcu_read_lock() is legal. Note again that srcu_read_
lock() may be used from idle and even offline CPUs, which means that
rcu_is_watching() does not apply to SRCU.

RCU_LOCKDEP_WARN() emits a warning if lockdep is enabled and if
its argument evaluates to true. For example, RCU_LOCKDEP_WARN(!rcu_
read_lock_held()) would emit a warning if invoked outside of an RCU
read-side critical section.

RCU_NONIDLE() may be used to force RCU to watch when execut-
ing the statement that is passed in as the sole argument. For example,
RCU_NONIDLE (WARN_ON(!rcu_is_watching())) would never emit a
warning. However, changes in the 2020-2021 timeframe extend RCU’s
reach deeper into the idle loop, which should greatly reduce or even eliminate
the need for RCU_NONIDLE().

Finally, rcu_sleep_check() emits a warning if invoked within an
RCU, RCU-bh, or RCU-sched read-side critical section.

371

E——

NMI
$53
[[o
[$]
8268
Qlcgg —
S 0= | <
IRQ Sdey &l 8
0T -5 £ _©
105 o=
Q52
3552 0=
L00(-) C"|4_-
== o=
TER
© D .
Process S \L CD.:) synchronize_rcu()
) \L
e

Figure 9.20: RCU API Usage Constraints

9.5.3.6 Where Can RCU’s APIs Be Used?

Figure 9.20 shows which APIs may be used in which in-kernel environments.
The RCU read-side primitives may be used in any environment, including
NMI, the RCU mutation and asynchronous grace-period primitives may be
used in any environment other than NMI, and, finally, the RCU synchronous
grace-period primitives may be used only in process context. The RCU
list-traversal primitives include 1ist_for_each_entry_rcu(), hlist_
for_each_entry_rcu(), etc. Similarly, the RCU list-mutation primitives
include 1ist_add_rcu(), hlist_del_rcu(), etc.

Note that as a general rule, primitives from other families of RCU may be
substituted, although srcu_read_lock_nmisafe() but not srcu_read_
lock() may be used in NMI context.

9.5.3.7 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API that supports
publication and subscription for insertions, waiting for all RCU readers to
complete, and maintenance of multiple versions. That said, it is possible
to build higher-level constructs on top of RCU, including the reader-writer-

378

locking, reference-counting, and existence-guarantee constructs listed in
Section 9.5.4. Furthermore, I have no doubt that the Linux community will
continue to find interesting new uses for RCU, just as they do for any of a
number of synchronization primitives throughout the kernel.

Of course, a more-complete view of RCU would also include all of the
things you can do with these APIs.

However, for many people, a complete view of RCU must include
sample RCU implementations. Appendix B therefore presents a series of
“toy” RCU implementations of increasing complexity and capability, though
others might prefer the classic “User-Level Implementations of Read-Copy
Update” [DMS™*12a]. For everyone else, the next section gives an overview
of some RCU use cases.

9.5.4 RCU Usage

This section answers the question “What is RCU?” from the viewpoint of
the uses to which RCU can be put. Because RCU is most frequently used
to replace some existing mechanism, we look at it primarily in terms of its
relationship to such mechanisms, as listed in Table 9.9 and as displayed in
Figure 9.23. Following the sections listed in this table, Section 9.5.4.12
provides a summary, which is expanded on in the following sections and
elsewhere [McK21, McK?22].

9.54.1 RCU for Pre-BSD Routing

In contrast to the later sections, this section focuses on a very specific use
case for the purpose of comparison with other mechanisms.

Listings 9.14 and 9.15 show code for an RCU-protected Pre-BSD
routing table (route_rcu.c). The former shows data structures and
route_lookup(), and the latter shows route_add () and route_del().

In Listing 9.14, line 2 adds the ->rh field used by RCU reclamation,
line 6 adds the ->re_freed use-after-free-check field, lines 16, 22, and 26
add RCU read-side protection, and lines 20 and 21 add the use-after-free
check. In Listing 9.15, lines 11, 13, 30, 34, and 39 add update-side
locking, lines 12 and 33 add RCU update-side protection, line 35 causes
route_cb() to be invoked after a grace period elapses, and lines 17-24

379
Table 9.9: RCU Usage

Mechanism RCU Replaces Page
RCU for pre-BSD routing 378
Wait for pre-existing things to finish 382
Phased state change 386
Add-only list (publish/subscribe) 388
Type-safe memory 389
Existence Guarantee 390
Light-weight garbage collector 392
Delete-only list 393
Quasi reader-writer lock 393
Quasi reference count 408

Quasi multi-version concurrency control (MVCC) 412

define route_cb (). This is minimal added code for a working concurrent
implementation.

Figure 9.21 shows the performance on the read-only workload.
RCU scales quite well, and offers nearly ideal performance. How-
ever, this data was generated using the RCU_SIGNAL flavor of userspace
RCU [Des09b, MDIJ13f], for which rcu_read_lock() and rcu_read_
unlock() generate a small amount of code. What happens for the QSBR
flavor of RCU, which generates no code at all for rcu_read_lock() and
rcu_read_unlock()? (See Section 9.5.1, and especially Figure 9.8, for a
discussion of RCU QSBR.)

The answer to this is shown in Figure 9.22, which shows that RCU
QSBR’s performance and scalability actually exceeds that of the ideal
synchronization-free workload.

Quick Quiz 9.53: Wait, what??? How can RCU QSBR possibly be better than
ideal? Just what rubbish definition of ideal would fail to be the best of all possible
results??? W

Listing 9.14: RCU Pre-BSD Routing Table Lookup

I struct route_entry {

2 struct rcu_head rh;

3 struct cds_list_head re_next;
4 unsigned long addr;

5 unsigned long iface;

6 int re_freed;

7}

8 CDS_LIST_HEAD(route_list);

9 DEFINE_SPINLOCK(routelock);

10

11 unsigned long route_lookup(unsigned long addr)

12 {
13 struct route_entry *rep;
14 unsigned long ret;
15
16 rcu_read_lock();
17 cds_list_for_each_entry_rcu(rep, &route_list, re_next) {
18 if (rep->addr == addr) {
19 ret = rep—>iface;
20 if (READ_ONCE(rep->re_freed))
21 abort () ;
2 rcu_read_unlock();
23 return ret;
2 }
25 }
26 rcu_read_unlock();
27 return ULONG_MAX;
2% }

2.5x107

2x10’

1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.21: Pre-BSD Routing Table Protected by RCU

Listing 9.15: RCU Pre-BSD Routing Table Add/Delete

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (lrep)

7 return -ENOMEM;

8 rep->addr = addr;

9 rep->iface = interface;

10 rep->re_freed = 0;

11 spin_lock(&routelock) ;

12 cds_list_add_rcu(&rep->re_next, &route_list);

13 spin_unlock(&routelock) ;

14 return 0;

15 }

16

17 static void route_cb(struct rcu_head *rhp)

18 {

19 struct route_entry *rep;

20

21 rep = container_of (rhp, struct route_entry, rh);
2 WRITE_ONCE(rep->re_freed, 1);

23 free(rep);

24 }

25

26 int route_del(unsigned long addr)

27 {

28 struct route_entry *rep;

29

30 spin_lock(&routelock) ;

31 cds_list_for_each_entry(rep, &route_list, re_next) {
3 if (rep->addr == addr) {

33 cds_list_del_rcu(&rep->re_next);
34 spin_unlock(&routelock) ;

35 call_rcu(&rep->rh, route_cb);

36 return 0;

37 }

38 i

39 spin_unlock(&routelock) ;

40 return -ENOENT;

382

2.5x107

= 2x10’ |- RCU-QSBR _ .. %
3 v A

= 1.5x10° | -
s

g

@ 1x10” |- -
3

x

8

3 sx10° | et

-~ __+.-+-“"'+" hazptr

0 [I N S B
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.22: Pre-BSD Routing Table Protected by RCU QSBR

Quick Quiz 9.54: Given RCU QSBR’s read-side performance, why bother with
any other flavor of userspace RCU? H

Although Pre-BSD routing is an excellent RCU use case, it is worthwhile
looking at the relationships betweeen the wider spectrum of use cases shown
in Figure 9.23. This task is taken up by the following sections.

While reading these sections, please ask yourself which of these use
cases best describes Pre-BSD routing.

9.5.4.2 Wait for Pre-Existing Things to Finish

As noted in Section 9.5.2 an important component of RCU is a way of
waiting for RCU readers to finish. One of RCU’s great strength is that it
allows you to wait for each of thousands of different things to finish without
having to explicitly track each and every one of them, and without incurring
the performance degradation, scalability limitations, complex deadlock
scenarios, and memory-leak hazards that are inherent in schemes that use
explicit tracking.

In this section, we will show how synchronize_sched()’s read-side
counterparts (which include anything that disables preemption, along with

Quasi Reader-Writer Lock

+ Readers as read-held reader-writer lock <€
+ Spatial as well as temporal synchronization

+ Optional read-to-write upgrade

+ Optional bridging to per-object lock or reference
+ Optionally ignore deleted objects

Quasi Reference Count

+ Readers as individual or bulk unconditional references <€
+ Optional bridging to per-object lock or reference

Quasi Multi-Version Consistency Control

+ Readers include some sort of snapshot operation

+ Constraints on readers and writers:
(1) single object, (2) sequence locks, (3) version number(s),
(4) Issaquah challenge, and/or (5) many other approaches

A

Light-Weight Garbage Collector for
Non-Blocking Synchronization (NBS)

Delete-Only List

- Publish/subscribe

+ NBS ﬂk
Y

Type-Safe Memory Existence Guarantee

| + Slab allocator + Heap allocator
+ Deferred slab reclamation + Deferred reclamation
A A

Publish/Subscribe Add-Only Phased State Change
For Linked Structure List
+ Checked state variable
rcu_assign_pointer() & A
rcu_dereference()

Wait for Pre-Existing Things to Finish

vs. synchronize_rcu()

rcu_read_lock() & rcu_read_unlock()

Figure 9.23: Relationships Between RCU Use Cases

383

384

hardware operations and primitives that disable interrupts) permit you to
interaction with non-maskable interrupt (NMI) handlers, which is quite
difficult using locking. This approach has been called “Pure RCU” [McKO04],
and it is used in a few places in the Linux kernel.

The basic form of such “Pure RCU” designs is as follows:

1. Make a change, for example, to the way that the OS reacts to an NMI.

2. Wait for all pre-existing read-side critical sections to completely finish
(for example, by using the synchronize_sched() primitive).?’ The
key observation here is that subsequent RCU read-side critical sections
are guaranteed to see whatever change was made.

3. Clean up, for example, return status indicating that the change was
successfully made.

The remainder of this section presents example code adapted from the
Linux kernel. In this example, the nmi_stop () function in the now-defunct
oprofile facility uses synchronize_sched() to ensure that all in-flight
NMI notifications have completed before freeing the associated resources.
A simplified version of this code is shown in Listing 9.16.

Lines 1-4 define a profile_buffer structure, containing a size and
an indefinite array of entries. Line 5 defines a pointer to a profile buffer,
which is presumably initialized elsewhere to point to a dynamically allocated
region of memory.

Lines 7-16 define the nmi_profile () function, which is called from
within an NMI handler. As such, it cannot be preempted, nor can it be
interrupted by a normal interrupt handler, however, it is still subject to delays
due to cache misses, ECC errors, and cycle stealing by other hardware
threads within the same core. Line 9 gets a local pointer to the profile buffer
using the rcu_dereference () primitive to ensure memory ordering on
DEC Alpha, and lines 11 and 12 exit from this function if there is no profile
buffer currently allocated, while lines 13 and 14 exit from this function if
the pcvalue argument is out of range. Otherwise, line 15 increments the

20 In Linux kernel v5.1 and later, synchronize_sched() has been subsumed into
synchronize_rcu().

)
0
[

Listing 9.16: Using RCU to Wait for NMIs to Finish

struct profile_buffer {
long size;
atomic_t entry[0];
};

1

2

3

4

5 static struct profile_buffer xbuf = NULL;
6

7

8

9

void nmi_profile(unsigned long pcvalue)
{
struct profile_buffer *p = rcu_dereference(buf);
10
11 if (p == NULL)

12 return;

13 if (pcvalue >= p->size)

14 return;

15 atomic_inc(&p->entry[pcvaluel);
16 }

17

18 void nmi_stop(void)

19 {

20 struct profile_buffer *p = buf;
21

2 if (p == NULL)

23 return;

24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched() ;

26 kfree(p);

27 }

profile-buffer entry indexed by the pcvalue argument. Note that storing
the size with the buffer guarantees that the range check matches the buffer,
even if a large buffer is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop() function, where the caller is
responsible for mutual exclusion (for example, holding the correct lock).
Line 20 fetches a pointer to the profile buffer, and lines 22 and 23 exit the
function if there is no buffer. Otherwise, line 24 NULLs out the profile-buffer
pointer (using the rcu_assign_pointer () primitive to maintain memory
ordering on weakly ordered machines), and line 25 waits for an RCU Sched
grace period to elapse, in particular, waiting for all non-preemptible regions
of code, including NMI handlers, to complete. Once execution continues
at line 26, we are guaranteed that any instance of nmi_profile() that
obtained a pointer to the old buffer has returned. It is therefore safe to free
the buffer, in this case using the kfree () primitive.

386

Quick Quiz 9.55: Suppose that the nmi_profile () function was preemptible.
What would need to change to make this example work correctly? B

In short, RCU makes it easy to dynamically switch among profile buffers
(you just try doing this efficiently with atomic operations, or at all with
locking!). This is a rare use of RCU in its pure form. RCU is normally used
at higher levels of abstraction, as will be shown in the following sections.

9.5.4.3 Phased State Change

Figure 9.24 shows a timeline for an example phased state change to efficiently
handle maintenance operations. If there is no maintenance operation in
progress, common-case operations must proceed quickly, for example,
without acquiring a reader-writer lock. However, if there is a maintenance
operation in progress, the common-case operations must be undertaken
carefully, taking into account added complexities due to their running
concurrently with that maintenance operation. This means that common-
case operations will incur higher overhead during maintenance operations,
which is one reason that maintenance operations are normally scheduled to
take place during times of low load.

In the figure, these apparently conflicting requirements are resolved by
having a prepare phase prior to the maintenance operation and a cleanup
phase after it, during which the common-case operations can proceed either
quickly or carefully.

Example pseudo-code for this phased state change is shown in List-
ing 9.17. The common-case operations are carried out by cco() within
an RCU read-side critical section extending from line 5 to line 10. Here,
line 6 checks a global be_careful flag, invoking cco_carefully() or
cco_quickly (), as indicated.

This allows the maint () function to set the be_careful flag on line 15
and wait for an RCU grace period on line 16. When control reaches line 17,
all cco() functions that saw a false value of be_careful (and thus
which might invoke the cco_quickly() function) will have completed
their operations, so that all currently executing cco() functions will be
invoking cco_carefully (). This means that it is safe for the do_maint ()
function to be invoked. Line 18 then waits for all cco() functions that

387

Common-Case Maintenance
Operations Operations
Time

Quickly

I D g — - -
Either Prepare

I D 2
Carefully Maintenance

I D .
Either Clean up
Quickly

Figure 9.24: Phased State Change for Maintenance Operation

Listing 9.17: Phased State Change for Maintenance Operations

bool be_careful;

1
2

3 void cco(void)

4 1

5 rcu_read_lock();

6 if (READ_ONCE(be_careful))

7 cco_carefully();

8 else

9 cco_quickly();

10 rcu_read_unlock();

1}

12

13 void maint(void)

14 {

15 WRITE_ONCE(be_careful, true);
16 synchronize_rcu();

17 do_maint();

18 synchronize_rcu() ;

19 WRITE_ONCE(be_careful, false);

388

might have run concurrently with do_maint () to complete, and finally
line 19 sets the be_careful flag back to false.

Quick Quiz 9.56: What is the point of the second call to synchronize_rcu()
in function maint () in Listing 9.17? Isn’t it OK for any cco () invocations in the
clean-up phase to invoke either cco_carefully() or cco_quickly()? M

Quick Quiz 9.57: How can you be sure that the code shown in maint () in
Listing 9.17 really works? H

Phased state change allows frequent operations to use light-weight
checks, without the need for expensive lock acquisitions or atomic read-
modify-write operations, and is used in the Linux kernel in the guise of
rcu_sync [NZ13] to implement a variant of reader-writer semaphores with
lightweight readers. Phased state change adds only a checked state variable
to the wait-to-finish use case (Section 9.5.4.2), thus also residing at a rather
low level of abstraction.

9.5.4.4 Add-Only List

Add-only data structures, exemplified by the add-only list, can be used for a
surprisingly common set of use cases, perhaps most commonly the logging
of changes. Add-only data structures are a pure use of RCU’s underlying
publish/subscribe mechanism.

An add-only variant of a pre-BSD routing table can be derived from
Listings 9.14 and 9.15. Because there is no deletion, the route_del () and
route_cb() functions may be dispensed with, along with the ->rh and
->re_freed fields of the route_entry structure, the rcu_read_lock(),
the rcu_read_unlock() invocations in the route_lookup() function,
and all uses of the ->re_freed field in all remaining functions.

Of course, if there are many concurrent invocations of the route_add ()
function, there will be heavy contention on routelock, and if lockless
techniques are used, heavy memory contention on routelist. The usual
way to avoid this contention is to use a concurrency-friendly data structure
such as a hash table (see Chapter 10). Alternatively, per-CPU data structures
might be periodically merged into a single global data structure.

389

On the other hand, if there is never any deletion, extended time periods
featuring many concurrent invocations of route_add () will eventually
consume all available memory. Therefore, most RCU-protected data
structures also implement deletion.

9.5.4.5 Type-Safe Memory

A number of lockless algorithms do not require that a given data element keep
the same identity through a given RCU read-side critical section referencing
it—but only if that data element retains the same type. In other words,
these lockless algorithms can tolerate a given data element being freed and
reallocated as the same type of structure while they are referencing it, but
must prohibit a change in type. This guarantee, called “type-safe memory”
in academic literature [GC96], is weaker than the existence guarantees
discussed in Section 9.5.4.6, and is therefore quite a bit harder to work with.
Type-safe memory algorithms in the Linux kernel make use of slab caches,
specially marking these caches with SLAB_TYPESAFE_BY_RCU so that RCU
is used when returning a freed-up slab to system memory. This use of RCU
guarantees that any in-use element of such a slab will remain in that slab,
thus retaining its type, for the duration of any pre-existing RCU read-side
critical sections.

Quick Quiz 9.58: But what if there is an arbitrarily long series of RCU read-side
critical sections in multiple threads, so that at any point in time there is at least
one thread in the system executing in an RCU read-side critical section? Wouldn’t
that prevent any data from a SLAB_TYPESAFE_BY_RCU slab ever being returned
to the system, possibly resulting in OOM events? H

It is important to note that SLAB_TYPESAFE_BY_RCU will in no way
prevent kmem_cache_alloc () from immediately reallocating memory that
was just now freed viakmem_cache_free()! Infact, the SLAB_TYPESAFE_
BY_RCU-protected data structure just returned by rcu_dereference ()
might be freed and reallocated an arbitrarily large number of times, even when
under the protection of rcu_read_lock(). Instead, SLAB_TYPESAFE_
BY_RCU operates by preventing kmem_cache_free() from returning a
completely freed-up slab of data structures to the system until after an RCU
grace period elapses. In short, although a given RCU read-side critical

390

section might see a given SLAB_TYPESAFE_BY_RCU data element being
freed and reallocated arbitrarily often, the element’s type is guaranteed not
to change until that critical section has completed.

These algorithms therefore typically use a validation step that checks to
make sure that the newly referenced data structure really is the one that was
requested [LS86, Section 2.5]. These validation checks require that portions
of the data structure remain untouched by the free-reallocate process. Such
validation checks are usually very hard to get right, and can hide subtle and
difficult bugs.

Therefore, although type-safety-based lockless algorithms can be ex-
tremely helpful in a very few difficult situations, you should instead use
existence guarantees where possible. Simpler is after all almost always
better! On the other hand, type-safety-based lockless algorithms can provide
improved cache locality, and thus improved performance. This improved
cache locality is provided by the fact that such algorithms can immediately
reallocate a newly freed block of memory. In contrast, algorithms based on
existence guarantees must wait for all pre-existing readers before reallocating
memory, by which time that memory may have been ejected from CPU
caches.

As can be seen in Figure 9.23, RCU’s type-safe-memory use case
combines both the wait-to-finish and publish-subscribe components, but
in the Linux kernel also includes the slab allocator’s deferred reclamation
specified by the SLAB_TYPESAFE_BY_RCU flag.

9.5.4.6 Existence Guarantee

Gamsa et al. [GKAS99] discuss existence guarantees and describe how
a mechanism resembling RCU can be used to provide these existence
guarantees (see Section 5 on page 7 of the PDF), and Section 7.4 discusses
how to guarantee existence via locking, along with the ensuing disadvantages
of doing so. The effect is that if any RCU-protected data element is accessed
within an RCU read-side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side critical section.

Listing 9.18 demonstrates how RCU-based existence guarantees can
enable per-element locking via a function that deletes an element from a
hash table. Line 6 computes a hash function, and line 7 enters an RCU

391

Listing 9.18: Existence Guarantees Enable Per-Element Locking

I int delete(int key)

2 {

3 struct element *p;

4 int b;

5

6 b = hashfunction(key);

7 rcu_read_lock();

8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {
10 rcu_read_unlock();

11 return 0O;

12 ¥

13 spin_lock(&p->lock);

14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();

16 rcu_assign_pointer (hashtable[b], NULL);
17 spin_unlock(&p->lock) ;

18 synchronize_rcu();

19 kfree(p);

20 return 1;

21 ¥

2 spin_unlock(&p->lock) ;

23 rcu_read_unlock();

24 return O;

25}

read-side critical section. If line 9 finds that the corresponding bucket of
the hash table is empty or that the element present is not the one we wish
to delete, then line 10 exits the RCU read-side critical section and line 11
indicates failure.

Quick Quiz 9.59: What if the element we need to delete is not the first element
of the list on line 9 of Listing 9.18? M

Otherwise, line 13 acquires the update-side spinlock, and line 14 then
checks that the element is still the one that we want. If so, line 15 leaves the
RCU read-side critical section, line 16 removes it from the table, line 17
releases the lock, line 18 waits for all pre-existing RCU read-side critical
sections to complete, line 19 frees the newly removed element, and line 20
indicates success. If the element is no longer the one we want, line 22
releases the lock, line 23 leaves the RCU read-side critical section, and
line 24 indicates failure to delete the specified key.

392

Quick Quiz 9.60: Why is it OK to exit the RCU read-side critical section on
line 15 of Listing 9.18 before releasing the lock on line 177 W

Quick Quiz 9.61: Why not exit the RCU read-side critical section on line 23 of
Listing 9.18 before releasing the lock on line 22? W

Quick Quiz 9.62: The RCU-based algorithm shown in Listing 9.18 locks very
similar to that in Listing 7.11, so why should the RCU-based approach be any
better? W

Alert readers will recognize this as only a slight variation on the original
wait-to-finish theme (Section 9.5.4.2), adding publish/subscribe, linked
structures, a heap allocator (typically), and deferred reclamation, as shown
in Figure 9.23. They might also note the deadlock-immunity advantages
over the lock-based existence guarantees discussed in Section 7.4.

9.5.4.7 Light-Weight Garbage Collector

A not-uncommon exclamation made by people first learning about RCU
is “RCU is sort of like a garbage collector!” [Kl1i23]. This exclamation
has a large grain of truth, especially when using RCU to implement non-
blocking algorithms that rely on garbage collection, but it can sometimes be
misleading.

Perhaps the best way to think of the relationship between RCU and
automatic garbage collectors (GCs) is that RCU resembles a GC in that the
timing of collection is automatically determined, but that RCU differs from
a GCin that: (1) The programmer must manually indicate when a given data
structure is eligible to be collected and (2) The programmer must manually
mark the RCU read-side critical sections where references might be held.

Despite these differences, the resemblance does go quite deep. In fact,
the first RCU-like mechanism I am aware of used a reference-count-based
garbage collector to handle the grace periods [KL80], and the connection
between RCU and garbage collection has been noted more recently [SWS16].

The light-weight garbage collector use case is very similar to the
existence-guarantee use case, adding only the desired non-blocking algo-
rithm to the mix. This light-weight garbage collector use case can also

393

be used in conjunction with the existence guarantees described in the next
section.

9.5.4.8 Delete-Only List

The delete-only list is the less-popular counterpart to the add-only list covered
in Section 9.5.4.4, and can be thought of as the existence-guarantee use
case, but without the publish/subscribe component, as shown in Figure 9.23.
A delete-only list can be used when the universe of possible members of
the list is known at initialization, and where members can be removed. For
example, elements of the list might represent hardware elements of the
system that are subject to failure, but cannot be repaired or replaced without
a reboot.

An delete-only variant of a pre-BSD routing table can be derived from
Listings 9.14 and 9.15. Because there is no addition, the route_add ()
function may be dispensed with, or, alternatively, its use might be restricted
to initialization time. In theory, the route_lookup () function can use a
non-RCU iterator, though in the Linux kernel this will result in complaints
from debug code. In addition, the incremental cost of an RCU iterator is
usually negligible.

As a result, delete-only situations typically use algorithms and data
structures that are designed for addition as well as deletion.

9.5.4.9 Quasi Reader-Writer Lock

Perhaps the most common use of RCU within the Linux kernel is as a
replacement for reader-writer locking in read-intensive situations. Never-
theless, this use of RCU was not immediately apparent to me at the outset.
In fact, I chose to implement a lightweight reader-writer lock [HW92]?!
before implementing a general-purpose RCU implementation back in the
early 1990s. Each and every one of the uses I envisioned for the lightweight
reader-writer lock was instead implemented using RCU. In fact, it was more
than three years before the lightweight reader-writer lock saw its first use.
Boy, did I feel foolish!

21 Similar to brlock in the 2.4 Linux kernel and to 1glock in more recent Linux kernels.

394
10000

c

S 1 L -

= 000 E rwlock 4'3535#

g i =

9 | T |
s °f M
) r At]
s 10 FF E
o E 3
e I RCU 1
© 1 - - -
4 Nl 3

0.1 Ll Ll
10 100

Number of CPUs (Threads)

—_

Figure 9.25: Performance Advantage of RCU Over Reader-Writer Locking

The key similarity between RCU and reader-writer locking is that both
have read-side critical sections that can execute concurrently. In fact, in
some cases, it is possible to mechanically substitute RCU API members for
the corresponding reader-writer lock API members. But first, why bother?

Advantages of RCU include performance, deadlock immunity, and
realtime latency. There are, of course, limitations to RCU, including the fact
that readers and updaters run concurrently, that low-priority RCU readers
can block high-priority threads waiting for a grace period to elapse, and that
grace-period latencies can extend for many milliseconds. These advantages
and limitations are discussed in the following paragraphs.

Performance The read-side performance advantages of Linux-kernel
RCU over reader-writer locking are shown in Figure 9.25, which was
generated on a 448-CPU 2.10 GHz Intel x86 system.

Quick Quiz 9.63: WTF? How the heck do you expect me to believe that RCU
can have less than a 300-picosecond overhead when the clock period at 2.10 GHz
is almost 500 picoseconds? H

395

10000 F——rrrrr———rr

A1
L ffﬁg]
s I 2F
s 1000 rwlock ¥ E
o o —]
2 i fi]
5 i 1
o —TT2
1 = | —
g 10 B :
! i + 1
2 oo 1
e 10 RCU E
5] F oL T E
3 g o]
1 I Ll Ll]

1 10 100
Number of CPUs (Threads)

Figure 9.26: Performance Advantage of Preemptible RCU Over Reader-
Writer Locking

Quick Quiz 9.64: Didn’t an earlier edition of this book show RCU read-side
overhead way down in the sub-picosecond range? What happened??? H

Quick Quiz 9.65: Why is there such large variation for the RCU trace in
Figure 9.25? W

Note that reader-writer locking is more than an order of magnitude
slower than RCU on a single CPU, and is more than four orders of magnitude
slower on 192 CPUs. In contrast, RCU scales quite well. In both cases, the
error bars cover the full range of the measurements from 30 runs, with the
line being the median.

A more moderate view may be obtained from a CONFIG_PREEMPT
kernel, though RCU still beats reader-writer locking by between a factor of
seven on a single CPU and by three orders of magnitude on 192 CPUs, as
shown in Figure 9.26, which was generated on the same 448-CPU 2.10 GHz
x86 system. Note the high variability of reader-writer locking at larger
numbers of CPUs. The error bars span the full range of data.

396

100000 — T

10000 £ rwlock 100 CPUs

— @
) Y S

S
B

1000 F

Nanoseconds per operation

100 | |
100 1000 10000

Critical-Section Duration (nanoseconds)

Figure 9.27: Comparison of RCU to Reader-Writer Locking as Function of
Critical-Section Duration, 192 CPUs

Quick Quiz 9.66: Given that the system had no fewer than 448 hardware threads,
why only 192 CPUs? M

Of course, the low performance of reader-writer locking in Figures 9.25
and 9.26 is exaggerated by the unrealistic zero-length critical sections. The
performance advantages of RCU decrease as the overhead of the critical
sections increase, as shown in Figure 9.27, which was run on the same system
as the previous plots. Here, the y-axis represents the sum of the overhead
of the read-side primitives and that of the critical section and the x-axis
represents the critical-section overhead in nanoseconds. But please note the
logscale y axis, which means that the small separations between the traces
still represent significant differences. This figure shows non-preemptible
RCU, but given that preemptible RCU’s read-side overhead is only about
three nanoseconds, its plot would be nearly identical to Figure 9.27.

Quick Quiz 9.67: Why the larger error ranges for the submicrosecond durations
in Figure 9.27? W

There are three traces for reader-writer locking, with the upper trace
being for 100 CPUs, the next for 10 CPUs, and the lowest for 1 CPU.

397

The greater the number of CPUs and the shorter the critical sections, the
greater is RCU’s performance advantage. These performance advantages
are underscored by the fact that 100-CPU systems are no longer uncommon
and that a number of system calls (and thus any RCU read-side critical
sections that they contain) complete within microseconds.

In addition, as is discussed in the next paragraph, RCU read-side
primitives are almost entirely deadlock-immune.

Deadlock Immunity Although RCU offers significant performance ad-
vantages for read-mostly workloads, one of the primary reasons for creating
RCU in the first place was in fact its immunity to read-side deadlocks.
This immunity stems from the fact that RCU read-side primitives do not
block, spin, or even do backwards branches, so that their execution time is
deterministic. It is therefore impossible for them to participate in a deadlock
cycle.

Quick Quiz 9.68: Is there an exception to this deadlock immunity, and if so,
what sequence of events could lead to deadlock? W

An interesting consequence of RCU’s read-side deadlock immunity is
that it is possible to unconditionally upgrade an RCU reader to an RCU
updater. Attempting to do such an upgrade with reader-writer locking results
in deadlock. A sample code fragment that does an RCU read-to-update
upgrade follows:

I | rcu_read_lock();

2| list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);

4 if (need_update(p)) {

5 spin_lock(my_lock);

6 do_update(p) ;

7 spin_unlock(&my_lock) ;

8 ¥

9}

0

rcu_read_unlock();

Note that do_update () is executed under the protection of the lock
and under RCU read-side protection.

Another interesting consequence of RCU’s deadlock immunity is its
immunity to a large class of priority inversion problems. For example,

398

low-priority RCU readers cannot prevent a high-priority RCU updater from
acquiring the update-side lock. Similarly, a low-priority RCU updater
cannot prevent high-priority RCU readers from entering an RCU read-side
critical section.

Quick Quiz 9.69: Immunity to both deadlock and priority inversion??? Sounds
too good to be true. Why should I believe that this is even possible? H

Realtime Latency Because RCU read-side primitives neither spin nor
block, they offer excellent realtime latencies. In addition, as noted earlier,
this means that they are immune to priority inversion involving the RCU
read-side primitives and locks.

However, RCU is susceptible to more subtle priority-inversion scenarios,
for example, a high-priority process blocked waiting for an RCU grace
period to elapse can be blocked by low-priority RCU readers in -rt kernels.
This can be solved by using RCU priority boosting [McK07d, GMTWOS].

However, use of RCU priority boosting requires that rcu_read_
unlock () do deboosting, which entails acquiring scheduler locks. Some
care is therefore required within the scheduler and RCU to avoid deadlocks,
which as of the v5.15 Linux kernel requires RCU to avoid invoking the
scheduler while holding any of RCU’s locks.

This in turn means that rcu_read_unlock() is not always lockless
when RCU priority boosting is enabled. However, rcu_read_unlock()
will still be lockless if its critical section was not priority-boosted. Fur-
thermore, critical sections will not be priority boosted unless they are
preempted, or, in -rt kernels, they acquire non-raw spinlocks. This means
that rcu_read_unlock() will normally be lockless from the perspective
of the highest priority task running on any given CPU.

RCU Readers and Updaters Run Concurrently Because RCU readers
never spin nor block, and because updaters are not subject to any sort
of rollback or abort semantics, RCU readers and updaters really can run
concurrently. This means that RCU readers might access stale data, and
might even see inconsistencies, either of which can render conversion from
reader-writer locking to RCU non-trivial.

399
|

’ rwlock readef | spin rwlock reader

‘ rwlock reader | spin rwlock reader

’ rwlock reader ! | spin rwlock reader

I spin |rwlockwriter

|
’ RCU reader, | RCU reader| RCU reader |
| RCUreader | RCU reader | RCU reader |
| RCUreader | | RGUreader | RCU reader |

| RCU updater ‘

/ Time

Update Received

Figure 9.28: Response Time of RCU vs. Reader-Writer Locking

However, in a surprisingly large number of situations, inconsistencies
and stale data are not problems. The classic example is the networking
routing table. Because routing updates can take considerable time to reach a
given system (seconds or even minutes), the system will have been sending
packets the wrong way for quite some time when the update arrives. It
is usually not a problem to continue sending updates the wrong way for
a few additional milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish, the RCU readers
might well see the change more quickly than would batch-fair reader-writer-
locking readers, as shown in Figure 9.28. This faster RCU response time has
since been corroborated (if perhaps a bit unrealistically) by Markov-model
analysis [RCY23, Figures 3 and 5].

Quick Quiz 9.70: But how many other algorithms really tolerate stale and
inconsistent data? W

Once the update is received, the rwlock writer cannot proceed until
the last reader completes, and subsequent readers cannot proceed until the
writer completes. However, these subsequent readers are guaranteed to see
the new value, as indicated by the green shading of the rightmost boxes. In
contrast, RCU readers and updaters do not block each other, which permits

400

the RCU readers to see the updated values sooner. Of course, because their
execution overlaps that of the RCU updater, all of the RCU readers might
well see updated values, including the three readers that started before the
update. Nevertheless only the green-shaded rightmost RCU readers are
guaranteed to see the updated values.

Reader-writer locking and RCU simply provide different guarantees.
With reader-writer locking, any reader that begins after the writer begins is
guaranteed to see new values, and any reader that attempts to begin while
the writer is spinning might or might not see new values, depending on
the reader/writer preference of the rwlock implementation in question. In
contrast, with RCU, any reader that begins after the updater completes is
guaranteed to see new values, and any reader that completes after the updater
begins might or might not see new values, depending on timing.

The key point here is that, although reader-writer locking does indeed
guarantee consistency within the confines of the computer system, there
are situations where this consistency comes at the price of increased
inconsistency with the outside world, courtesy of the finite speed of light and
the non-zero size of atoms. In other words, reader-writer locking obtains
internal consistency at the price of silently stale data with respect to the
outside world.

Note that if a value is computed while read-holding a reader-writer lock,
and then that value is used after that lock is released, then this reader-writer-
locking use case is using stale data. After all, the quantities that this value
is based on could change at any time after that lock is released. This sort of
reader-writer-locking use case is often easy to convert to RCU, as will be
shown in Listings 9.19, 9.20, and 9.21 and the accompanying text.

Low-Priority RCU Readers Can Block High-Priority Reclaimers In
Realtime RCU [GMTWOS] or SRCU [McKO06], a preempted reader will
prevent a grace period from completing, even if a high-priority task is
blocked waiting for that grace period to complete. Realtime RCU can avoid
this problem by substituting call_rcu() for synchronize_rcu() or by
using RCU priority boosting [McK07d, GMTWO08]. It might someday be
necessary to augment SRCU and RCU Tasks Trace with priority boosting,
but not before a clear real-world need is demonstrated.

401

Listing 9.19: Converting Reader-Writer Locking to RCU: Data

1 struct el { 1 struct el {

2 struct list_head 1lp; 2 struct list_head 1lp;

3 long key; 3 long key;

4 spinlock_t mutex; 4 spinlock_t mutex;

5 int data; 5 int data;

6 /x Other data fields */ 6 /* Other data fields */
[H 73}

8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex) ;
9 LIST_HEAD(head); 9 LIST_HEAD(head);

Quick Quiz 9.71: If Tasks RCU Trace might someday be priority boosted, why
not also Tasks RCU and Tasks RCU Rude? W

RCU Grace Periods Extend for Many Milliseconds With the exception
of userspace RCU [Des09b, MDJ13f], expedited grace periods, and several
of the “toy” RCU implementations described in Appendix B, RCU grace peri-
ods extend milliseconds. Although there are a number of techniques to render
such long delays harmless, including use of the asynchronous interfaces
(call_rcu() and call_rcu_bh()) or of the polling interfaces (get_
state_synchronize_rcu(), start_poll_synchronize_rcu(), and
poll_state_synchronize_rcu()), this situation is a major reason for
the rule of thumb that RCU be used in read-mostly situations.

As noted in Section 9.5.3, within the Linux kernel, shorter grace
periods may be obtained via expedited grace periods, for example, by invok-
ing synchronize_rcu_expedited() instead of synchronize_rcu().
Expedited grace periods can reduce delays to as little as a few tens of
microseconds, albeit at the expense of higher CPU utilization and IPIs. The
added IPIs can be especially unwelcome in some real-time workloads.

Code: Reader-Writer Locking vs. RCU In the best case, the conversion
from reader-writer locking to RCU is quite simple, as shown in Listings 9.19,
9.20, and 9.21, all taken from Wikipedia [MPA*06].

However, the transformation is not always this straightforward. This
is because neither the spin_lock() nor the synchronize_rcu() in
Listing 9.21 exclude the readers in Listing 9.20. First, the spin_lock () does

402

Listing 9.20: Converting Reader-Writer Locking to RCU: Search

1 int search(long key, int *result) 11
2 { 21
3 struct el *p; 3
4 4
5 read_lock(&listmutex); 5
6 list_for_each_entry(p, &head, 1lp) { 6
7 if (p->key == key) { 7
8 *result = p->data; 8
9 read_unlock(&listmutex) ; 9
10 return 1; 10
11 } 11
12 } 12
13 read_unlock(&listmutex) ; 13
14 return 0; 14
15 } 15 }

nt search(long key, int *result)

struct el *p;

rcu_read_lock();
list_for_each_entry_rcu(p, &head, 1p) {
if (p->key == key) {
*result = p->data;
rcu_read_unlock();
return 1;
¥
}
rcu_read_unlock();
return 0;

Listing 9.21: Converting Reader-Writer Locking to RCU: Deletion

1 int delete(long key) 1 i

2 { 2 {
3 struct el *p; 3
4 4
5 write_lock(&listmutex); 5
6 list_for_each_entry(p, &head, 1lp) { 6
7 if (p->key == key) { 7
8 list_del(&p->1p); 8
9 write_unlock(&listmutex); 9
10
10 kfree(p); 11
11 return 1; 12
12 } 13
13 } 14
14 write_unlock(&listmutex); 15
15 return O; 16

16 } 17 }

nt delete(long key)
struct el *p;

spin_lock(&listmutex) ;
list_for_each_entry(p, &head, 1lp) {
if (p->key == key) {
list_del_rcu(&p->1p);
spin_unlock(&listmutex);
synchronize_rcu();
kfree(p);
return 1;
}
}
spin_unlock(&listmutex);
return O;

403

not interact in any way with rcu_read_lock() and rcu_read_unlock(),
thus not excluding them. Second, although both write_lock() and
synchronize_rcu() wait for pre-existing readers, only write_lock()
prevents subsequent readers from commencing.?> Thus, synchronize_
rcu() cannot exclude readers. Nevertheless, a great many situations using
reader-writer locking can be converted to RCU.

More-elaborate cases of replacing reader-writer locking with RCU may
be found elsewhere [Brol5a, Brol5b].

Semantics: Reader-Writer Locking vs. RCU Expanding on the previous
section, reader-writer locking semantics can be roughly and informally
summarized by the following three temporal constraints:

1. Write-side acquisitions wait for any read-holders to release the lock.
2. Writer-side acquisitions wait for any write-holder to release the lock.

3. Read-side acquisitions wait for any write-holder to release the lock.

RCU dispenses entirely with constraint #3 and weakens the other two as
follows:

1. Writers wait for any pre-existing read-holders before progressing to
the destructive phase of their update (usually the freeing of memory).

2. Writers synchronize with each other as needed.

It is of course this weakening that permits RCU implementations to attain
excellent performance and scalability. It also allows RCU to implement the
aforementioned unconditional read-to-write upgrade that is so attractive
and so deadlock-prone in reader-writer locking. Code using RCU can
compensate for this weakening in a surprisingly large number of ways, but
most commonly by imposing spatial constraints:

1. New data is placed in newly allocated memory.

22 Kudos to whoever pointed this out to Paul.

404

Listing 9.22: RCU Singleton Get

struct myconfig {
int a;
int b;

3 *curconfig;

1
2
3
4
5
6 int get_config(int *cur_a, int *cur_b)
7

8

{
struct myconfig *mcp;

9
10 rcu_read_lock();
11 mcp = rcu_dereference(curconfig);
12 if (!mcp) {
13 rcu_read_unlock();
14 return O;
15 }
16 *cur_a = mcp->a;
17 *cur_b = mcp->b;
18 rcu_read_unlock();
19 return 1;
20 }

2. Old data is freed, but only after:

(a) That data has been unlinked so as to be inaccessible to later
readers, and

(b) A subsequent RCU grace period has elapsed.

Of course, there are some reader-writer-locking use cases for which
RCU’s weakened semantics are inappropriate, but experience in the Linux
kernel indicates that more than 80 % of reader-writer locks can in fact be
replaced by RCU. For example, a common reader-writer-locking use case
computes some value while holding the lock and then uses that value after
releasing that lock. This use case results in stale data, and therefore often
accommodates RCU’s weaker semantics.

This interaction of temporal and spatial constraints is illustrated by
the RCU singleton data structure illustrated in Figures 9.6 and 9.7. This
structure is defined on lines 1-4 of Listing 9.22, and contains two integer
fields, ->a and ->b (singleton.c). The current instance of this structure
is referenced by the curconfig pointer defined on line 4.

The fields of the current structure are passed back through the cur_a
and cur_b parameters to the get_config() function defined on lines 6-20.

405

Listing 9.23: RCU Singleton Set

1 void set_config(int cur_a, int cur_b)

2 {

3 struct myconfig *mcp;

4

5 mcp = malloc(sizeof (*mcp));
6 BUG_ON(!mcp) ;

7 mcp->a = cur_a;

8 mcp—>b = cur_b;

9 mcp = xchg(&curconfig, mcp);
10 if (mep) {

11 synchronize_rcu();
12 free(mcp) ;

13 b

14}

These two fields can be slightly out of date, but they absolutely must be
consistent with each other. The get_config() function provides this
consistency within the RCU read-side critical section starting on line 10
and ending on either line 13 or line 18, which provides the needed temporal
synchronization. Line 11 fetches the pointer to the current myconfig
structure. This structure will be used regardless of any concurrent changes
due to calls to the set_config() function, thus providing the needed
spatial synchronization. If line 12 determines that the curconfig pointer
was NULL, line 14 returns failure. Otherwise, lines 16 and 17 copy out
the ->a and ->b fields and line 19 returns success. These ->a and ->b
fields are from the same myconf ig structure, and the RCU read-side critical
section prevents this structure from being freed, thus guaranteeing that these
two fields are consistent with each other.

The structure is updated by the set_config() function shown in
Listing 9.23. Lines 5-8 allocate and initialize a new myconfig structure.
Line 9 atomically exchanges a pointer to this new structure with the pointer to
the old structure in curconfig, while also providing full memory ordering
both before and after the xchg() operation, thus providing the needed
updater/reader spatial synchronization on the one hand and the needed
updater/updater synchronization on the other. If line 10 determines that the
pointer to the old structure was in fact non-NULL, line 11 waits for a grace
period (thus providing the needed reader/updater temporal synchronization)

406

Time
Address Space
»
T >
|
T) i
e 5,25 curconfig 9,81
, / _rl
0. I /s’ \ N
ol : ; (AN \
o, \ K ~ \
5. ! S~
9] 3 rcu_read_lock();. . . \
! < Z e, \
H mep = ... e - |
H *cur_a = mcp->a; (5) . mcp = kmalloc(...) \ I
-~ AT~ —~—~—-—--- ~»mcp = xchg(&curconfig, mcp);\—\—/’ ——————— !
83 + i *cur_b = mcp->b; (25) synchronizeircu();--»----.......,.._» //
o |] - rcu_read_unlock();, - rcu_read lock(); .~
[GZ T mep = ... «a——"
B I
lo A . * - .
5 ree(mcp); cur_a = mcp->a; (9)
I *cur_b = mcp->b; (81)
12 rcu_read_unlock();

Figure 9.29: RCU Spatial/Temporal Synchronization

and line 12 frees the old structure, safe in the knowledge that there are no
longer any readers still referencing it.

Figure 9.29 shows an abbreviated representation of get_config()
on the left and right and a similarly abbreviated representation of set_
config() in the middle. Time advances from top to bottom, and the
address space of the objects referenced by curconfig advances from
left to right. The boxes with comma-separated numbers each represent
a myconfig structure, with the constraint that ->b is the square of —>a.
Each blue dash-dotted arrow represents an interaction with the old structure
(on the left, containing “5,25”") and each green dashed arrow represents an
interaction with the new structure (on the right, containing “9,81”).

The black dotted arrows represent temporal relationships between
RCU readers on the left and right and the RCU grace period at center,
with each arrow pointing from an older event to a newer event. The
call to synchronize_rcu() followed the leftmost rcu_read_lock(),
and therefore that synchronize_rcu() invocation must not return until
after the corresponding rcu_read_unlock(). In contrast, the call to
synchronize_rcu() precedes the rightmost rcu_read_lock(), which
allows the return from that same synchronize_rcu() to ignore the corre-

407

sponding rcu_read_unlock(). These temporal relationships prevent the
myconfig structures from being freed while RCU readers are still accessing
them.

The two horizontal grey dashed lines represent the period of time during
which different readers get different results, however, each reader will see
one and only one of the two objects. All readers that end before the first
horizontal line will see the leftmost myconfig structure, and all readers
that start after the second horizontal line will see the rightmost structure.
Between the two lines, that is, during the grace period, different readers
might see different objects, but as long as each reader loads the curconfig
pointer only once, each reader will see a consistent view of its myconfig
structure.

Quick Quiz 9.72: But doesn’t the RCU grace period start sometime after the call
to synchronize_rcu() rather than in the middle of that xchg () statement? W

In short, when operating on a suitable linked data structure, RCU com-
bines temporal and spatial synchronization in order to approximate reader-
writer locking, with RCU read-side critical sections acting as the reader-
writer-locking reader, as shown in Figures 9.23 and 9.29. RCU’s temporal
synchronization is provided by the read-side markers, for example, rcu_
read_lock() and rcu_read_unlock(), as well as the update-side grace-
period primitives, for example, synchronize_rcu() orcall_rcu(). The
spatial synchronization is provided by the read-side rcu_dereference ()
family of primitives, each of which subscribes to a version published by
rcu_assign_pointer().”> RCU’s combining of temporal and spatial
synchronization contrasts to the schemes presented in Sections 6.3.2, 6.3.3,
and 7.1.4, in which temporal and spatial synchronization are provided
separately by locking and by static data-structure layout, respectively.

Quick Quiz 9.73: Is RCU the only synchronization mechanism that combines
temporal and spatial synchronization in this way? W

23 Preferably with both rcu_dereference () and rcu_assign_pointer () being em-
bedded in higher-level APIs.

408

9.5.4.10 Quasi Reference Count

Because grace periods are not allowed to complete while there is an RCU
read-side critical section in progress, the RCU read-side primitives may be
used as a restricted reference-counting mechanism. For example, consider
the following code fragment:

rcu_read_lock(); /* acquire reference. */

p = rcu_dereference(head);

/* do something with p. */
rcu_read_unlock(); /* release reference. */

oW -

The combination of the rcu_read_lock () and rcu_dereference ()
primitives can be thought of as acquiring a reference to p, because a grace
period starting after the rcu_dereference() assignment to p cannot
possibly end until after we reach the matching rcu_read_unlock(). This
reference-counting scheme is restricted in that it is forbidden to wait for RCU
grace periods within RCU read-side critical sections, and also forbidden
to hand off an RCU read-side critical section’s references from one task to
another.

Regardless of these restrictions, the following code can safely delete p:

spin_lock(&mylock) ;

p = head;

rcu_assign_pointer(head, NULL);
spin_unlock(&mylock) ;

/* Wait for all references to be released. */
synchronize_rcu() ;

kfree(p);

R Y I SRR SR

The assignment to head prevents any future references to p from being
acquired, and the synchronize_rcu() waits for any previously acquired
references to be released.

Quick Quiz 9.74: But wait! This is exactly the same code that might be used
when thinking of RCU as a replacement for reader-writer locking! What gives?

Of course, RCU can also be combined with traditional reference counting,
as discussed in Section 13.2.

409

10000 ——————— 13
g o
S 1000 | . + -
© F = E
g g refcntfg]
S 0fp - ﬁjj} .
a E 1T E
(2] N Il]
© .
5 10 b b =
[$] F E
(0] F 3
17} F]
2 i RCU 1
© 1 - .- —
z E - - E
o b

—_

10 100
Number of CPUs (Threads)

Figure 9.30: Performance of RCU vs. Reference Counting

Figure 9.31:

10000 f————rrrr————r 3
- e |
c i 73}1]
e 7
T 1000 | $43¢f*f .
3 g refent _F E
o B TR]
S 100 | T -
2 i !+]
8 C Tl]
& =]
= 0fF-*++ . __ RCU E
z E Lo R 1
1 Ll Ll

1 10 100
Number of CPUs (Threads)

Performance of Preemptible RCU vs. Reference Counting

410
100000 — T

c r]
K] B]
5 L 3
8 10000 |- refent 100 CPUs -
N - ‘,.‘ T 7
3 ’'g]
a y]
© | i
c

8 £

3 1000 | _
(7] - 3
@ g E
8 g]
g i]
S i]

100 Lol |
100 1000 10000

Critical-Section Duration (nanoseconds)

Figure 9.32: Response Time of RCU vs. Reference Counting, 192 CPUs

But why bother? Again, part of the answer is performance, as shown in
Figures 9.30 and 9.31, again showing data taken on a 448-CPU 2.1 GHz
Intel x86 system for non-preemptible and preemptible Linux-kernel RCU,
respectively. Non-preemptible RCU’s advantage over reference counting
ranges from more than an order of magnitude at one CPU up to about
four orders of magnitude at 192 CPUs. Preemptible RCU’s advantage
ranges from about a factor of three at one CPU up to about three orders of
magnitude at 192 CPUs.

However, as with reader-writer locking, the performance advantages
of RCU are most pronounced for short-duration critical sections and for
large numbers of CPUs, as shown in Figure 9.32 for the same system.
In addition, as with reader-writer locking, many system calls (and thus
any RCU read-side critical sections that they contain) complete in a few
microseconds.

Although traditional reference counters are usually associated with a
specific data structure, or perhaps a specific group of data structures, this
approach does have some disadvantages. For example, maintaining a single
global reference counter for a large variety of data structures typically
results in bouncing the cache line containing the reference count. As we

411

saw in Figures 9.30-9.32, such cache-line bouncing can severely degrade
performance.

In contrast, RCU’s lightweight rcu_read_lock(), rcu_
dereference(), and rcu_read_unlock() read-side primitives
permit extremely frequent read-side usage with negligible performance
degradation. Except that the calls to rcu_dereference () are not doing
anything specific to acquire a reference to the pointed-to object. The heavy
lifting is instead done by the rcu_read_lock() and rcu_read_unlock()
primitives and their interactions with RCU grace periods.

And ignoring those calls to rcu_dereference () permits RCU to be
thought of as a “bulk reference-counting” mechanism, where each call to
rcu_read_lock() obtains a reference on each and every RCU-protected
object, and with little or no overhead. However, the restrictions that go with
RCU can be quite onerous. For example, in many cases, the Linux-kernel
prohibition against sleeping while in an RCU read-side critical section
would defeat the entire purpose. Such cases might be better served by the
hazard pointers mechanism described in Section 9.3. Cases where code
rarely sleeps have been handled by using RCU as a reference count in the
common non-sleeping case and by bridging to an explicit reference counter
when sleeping is necessary.

Alternatively, situations where a reference must be held by a single task
across a section of code that sleeps may be accommodated with Sleepable
RCU (SRCU) [McKO06]. This fails to cover the not-uncommon situation
where a reference is “passed” from one task to another, for example, when a
reference is acquired when starting an I/O and released in the corresponding
completion interrupt handler. Again, such cases might be better handled by
explicit reference counters or by hazard pointers.

Of course, SRCU brings restrictions of its own, namely that the return
value from srcu_read_lock() be passed into the corresponding srcu_
read_unlock(), and that no SRCU primitives be invoked from hardware
interrupt handlers or from non-maskable interrupt (NMI) handlers. The
jury is still out as to how much of a problem is presented by this restriction,
and as to how it can best be handled.

412

However, in the common case where references are held within the
confines of a single CPU or task, RCU can be used as high-performance
and highly scalable reference-counting mechanism.

As shown in Figure 9.23, quasi reference counts add RCU readers as
individual or bulk reference counts, possibly also bridging to reference
counters in corner cases.

9.5.4.11 Quasi Multi-Version Concurrency Control

RCU can also be thought of as a simplified multi-version concurrency control
(MVCC) mechanism with weak consistency criteria. The multi-version
aspects were touched upon in Section 9.5.2.3. However, in its native form,
RCU provides version consistency only within a given RCU-protected data
element.

Nevertheless, there are situations where consistency and fresh data are
required across multiple data elements. Fortunately, there are a number of
approaches that avoid inconsistency and stale data, including the following:

1. Enclose RCU readers within sequence-locking readers, forcing the
RCU readers to be retried should an update occur, as described in
Section 13.4.2 and Section 13.4.3.

2. Place the data that must be consistent into a single element of a
linked data structure, and refrain from updating those fields within
any element visible to RCU readers. RCU readers gaining a reference
to any such element are then guaranteed to see consistent values. See
Section 13.5.4 for additional details.

3. Use a per-element lock that guards a “deleted” flag to allow RCU
readers to reject stale data [McK04, ACMSO03].

4. Provide an existence flag that is referenced by all data elements
whose update is to appear atomic to RCU readers [McK14d, McK14a,
McK15b, McK16b, McK16a].

5. Use one of a wide range of counter-based methods [McK08a, McK10,
MW11, McK14b, MSFM15, KMK*19]. In these approaches, up-
daters maintain a version number and maintain links to old versions

413

of a given piece of data. Readers take a snapshot of the current
version number, and, if necessary, traverse the links to find a version
consistent with that snapshot.

In short, when using RCU to approximate multi-version concurrency
control, you only pay for the level of consistency that you actually need.

As shown in Figure 9.23, quasi multi-version concurrency control is
based on existence guarantees, adding read-side snapshot operations and
constraints on readers and writers, the exact form of the constraint being
dictated by the consistency requirements, as summarized above.

9.5.4.12 RCU Usage Summary

At its core, RCU is nothing more nor less than an API that provides:

1. A publish-subscribe mechanism for adding new data,
2. A way of waiting for pre-existing RCU readers to finish, and

3. Adiscipline of maintaining multiple versions to permit change without
harming or unduly delaying concurrent RCU readers.

That said, it is possible to build higher-level constructs on top of RCU,
including the various use cases described in the earlier sections. Furthermore,
I have no doubt that new use cases will continue to be found for RCU, as
well as for any of a number of other synchronization primitives. And so it is
that RCU’s use cases are conceptually more complex than is RCU itself, as
hinted on page 300.

Quick Quiz 9.75: Which of these use cases best describes the Pre-BSD routing
example in Section 9.5.4.1? W

In the meantime, Figure 9.33 shows some rough rules of thumb on
where RCU is most helpful.

As shown in the blue box in the upper-right corner of the figure, RCU
works best if you have read-mostly data where stale and inconsistent data is
permissible (but see below for more information on stale and inconsistent
data). The canonical example of this case in the Linux kernel is routing

414
Pre-BSD Routing Table

Stale and Inconsistent Data OK /
B

100% Writes
100% Reads

Need Fully Fresh and Consistent Data

* 1. RCU provides ABA protection for update-friendly synchronization mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Figure 9.33: RCU Areas of Applicability

tables. Because it may have taken many seconds or even minutes for
the routing updates to propagate across the Internet, the system has been
sending packets the wrong way for quite some time. Having some small
probability of continuing to send some of them the wrong way for a few
more milliseconds is almost never a problem.

If you have a read-mostly workload where consistent data is required,
RCU works well, as shown by the green “read-mostly, need consistent data”
box. One example of this case is the Linux kernel’s mapping from user-level
System-V semaphore IDs to the corresponding in-kernel data structures.
Semaphores tend to be used far more frequently than they are created and
destroyed, so this mapping is read-mostly. However, it would be erroneous
to perform a semaphore operation on a semaphore that has already been
deleted. This need for consistency is handled by using the lock in the
in-kernel semaphore data structure, along with a “deleted” flag that is set
when deleting a semaphore. If a user ID maps to an in-kernel data structure
with the “deleted” flag set, the data structure is ignored, so that the user ID
is flagged as invalid.

Although this requires that the readers acquire a lock for the data structure
representing the semaphore itself, it allows them to dispense with locking

v2025.12.18a

415

for the mapping data structure. The readers therefore locklessly traverse the
tree used to map from ID to data structure, which in turn greatly improves
performance, scalability, and real-time response.

As indicated by the yellow “read-write” box, RCU can also be useful for
read-write workloads where consistent data is required, although usually in
conjunction with a number of other synchronization primitives. For example,
the directory-entry cache in recent Linux kernels uses RCU in conjunction
with sequence locks, per-CPU locks, and per-data-structure locks to allow
lockless traversal of pathnames in the common case. Although RCU can be
very beneficial in this read-write case, the corresponding code is often more
complex than that of the read-mostly cases.

Finally, as indicated by the red box in the lower-left corner of the figure,
update-mostly workloads requiring consistent data are rarely good places
to use RCU, though there are some exceptions [DMS*12a]. For example,
as noted in Section 9.5.4.5, within the Linux kernel, the SLAB_TYPESAFE _
BY_RCU slab-allocator flag provides type-safe memory to RCU readers,
which can greatly simplify non-blocking synchronization and other lockless
algorithms. In addition, if the rare readers are on critical code paths on
real-time systems, use of RCU for those readers might provide real-time
response benefits that more than make up for the increased update-side
overhead, as discussed in Section 14.3.6.5.

In short, RCU is an API that includes a publish-subscribe mechanism
for adding new data, a way of waiting for pre-existing RCU readers to finish,
and a discipline of maintaining multiple versions to allow updates to avoid
harming or unduly delaying concurrent RCU readers. This RCU API is best
suited for read-mostly situations, especially if stale and inconsistent data
can be tolerated by the application.

9.5.5 RCU Related Work

The first known mention of anything resembling RCU took the form
of a bug report from Donald Knuth [Knu73, page 413 of Fundamental
Algorithms] against Joseph Weizenbaum’s SLIP list-processing facility for
FORTRAN [Wei63]. Knuth was justified in reporting the bug, as SLIP had
no notion of any sort of grace-period guarantee.

416

The first known non-bug-report mention of anything resembling RCU
appeared in Kung’s and Lehman’s landmark paper [KL80]. There was some
additional use of this technique in academia [ML82, ML84, Lis88, Pug90,
And91, PAB*95, CAK*96, RSB*97, GKAS99], but much of the work in
this area was instead carried out by practitioners [RTY*87, HOS89, Jac93,
Joh95, SM95, SM97, SM98, MS98a].

Quick Quiz 9.76: Garbage collectors? Passive serialization? System reference
points? Quiescent states? Aging? Generations? Why on earth couldn’t the
knuckleheads working on these early papers bring themselves to agree on a
common terminology??? M

By the year 2000, the initiative had passed to open-source projects, most
notably the Linux kernel community [Rus00a, RusO0b, MSO1, MAK*01,
MSA*02, ACMS03].2* RCU was accepted into the Linux kernel in late
2002, with many subsequent improvements for scalability, robustness, real-
time response, energy efficiency, and specialized use cases. As of 2023,
Linux-kernel RCU is still under active development.

Quick Quiz 9.77: Why didn’t Kung’s and Lehman’s paper result in immediate
use of RCU? M

However, in the mid 2010s, there was a welcome upsurge in RCU
research and development across a number of communities and institu-
tions [Kaal5]. Section 9.5.5.1 describes uses of RCU, Section 9.5.5.2
describes RCU implementations (as well as work that both creates and uses
an implementation), and finally, Section 9.5.5.3 describes verification and
validation of RCU and its uses.

9.5.5.1 RCU Uses

Phil Howard and Jon Walpole of Portland State University (PSU) have
applied RCU to red-black trees [How12, HW11] combined with updates
synchronized using software transactional memory. Josh Triplett and
Jon Walpole (again of PSU) applied RCU to resizable hash tables [Tril2,

24 A list of citations with well over 200 entries may be found in bib/RCU.bib in the IAEX
source for this book.

417

TMW11, Corl4c, Corl4d]. Other RCU-protected resizable hash tables have
been created by Herbert Xu [Xul0] and by Mathieu Desnoyers [MDJ13c].

Austin Clements, Frans Kaashoek, and Nickolai Zeldovich of MIT
created an RCU-optimized balanced binary tree (Bonsai) [CKZ12], and
applied this tree to the Linux kernel’s VM subsystem in order to reduce
read-side contention on the Linux kernel’s mmap_sem. This work resulted
in order-of-magnitude speedups and scalability up to at least 80 CPUs for
a microbenchmark featuring large numbers of minor page faults. This is
similar to a patch developed earlier by Peter Zijlstra [Zij14], and both were
limited by the fact that, at the time, filesystem data structures were not safe
for RCU readers. Clements et al. avoided this limitation by optimizing
the page-fault path for anonymous pages only. More recently, filesystem
data structures have been made safe for RCU readers [Cor10a, Corl1], so
perhaps this work can be implemented for all page types, not just anonymous
pages—Peter Zijlstra has, in fact, recently prototyped exactly this, and
Laurent Dufour Michel Lespinasse have continued work along these lines.
For their part, Matthew Wilcox and Liam Howlett are working towards
use of RCU to enable fine-grained locking of and lockless access to other
memory-management data structures.

Yandong Mao and Robert Morris of MIT and Eddie Kohler of Harvard
University created another RCU-protected tree named Masstree [MKM12]
that combines ideas from B+ trees and tries. Although this tree is about
2.5x slower than an RCU-protected hash table, it supports operations on
key ranges, unlike hash tables. In addition, Masstree supports efficient
storage of objects with long shared key prefixes and, furthermore, provides
persistence via logging to mass storage.

The paper notes that Masstree’s performance rivals that of memcached,
even given that Masstree is persistently storing updates and memcached
is not. The paper also compares Masstree’s performance to the persistent
datastores MongoDB, VoltDB, and Redis, reporting significant performance
advantages for Masstree, in some cases exceeding two orders of magnitude.
Another paper [TZK*13], by Stephen Tu, Wenting Zheng, Barbara Liskov,
and Samuel Madden of MIT and Kohler, applies Masstree to an in-memory
database named Silo, achieving 700K transactions per second (42M trans-
actions per minute) on a well-known transaction-processing benchmark.

418

Interestingly enough, Silo guarantees linearizability without incurring the
overhead of grace periods while holding locks.

Maya Arbel and Hagit Attiya of Technion took a more rigorous ap-
proach [AA14] to an RCU-protected search tree that, like Masstree, allows
concurrent updates. This paper includes a proof of correctness, includ-
ing proof that all operations on this tree are linearizable. Unfortunately,
this implementation achieves linearizability by incurring the full latency
of grace-period waits while holding locks, which degrades scalability of
update-only workloads. One way around this problem is to abandon lin-
earizability [HKLP12, McK14d], however, Arbel and Attiya instead created
an RCU variant that reduces low-end grace-period latency. Of course,
nothing comes for free, and this RCU variant appears to hit a scalability
limit at about 32 CPUs. Although there is much to be said for dropping
linearizability, thus gaining both performance and scalability, it is very good
to see academics experimenting with alternative RCU implementations.

9.5.5.2 RCU Implementations

Timothy Harris created a time-based user-space RCU [Har01] that improves
on those created previously by Jacobson [Jac93] and John [Joh95]. These
prior two time-based approaches each assume a sharp upper bound on
reader duration, which can work correctly in hard real-time systems. In non-
real-time systems, this type of approach is subject to failure when readers
are interrupted, preempted, or otherwise delayed. However, the fact that
such a failure-prone implementation would be independently invented twice
shows the depth of the need for RCU-like mechanisms. Timothy Harris
improves upon these two earlier efforts by requiring each reader to take a
snapshot of a global timebase before starting its read-side traversal. Freeing
a reader-visible object is then deferred until all processes’ reader snapshots
indicate a time following that of the removal of that object. However, global
timebases can be expensive and inaccurate on some systems.

Keir Fraser created a user-space RCU named EBR for use in non-blocking
synchronization and software transactional memory [Fra03, Fra04, FHO7].
This work improves on that of Timothy Harris by replacing the global clock
with a software counter, thus eliminating much of the expense and all of the
inaccuracy associated with commodity-system global clocks of that time.

419

Interestingly enough, this work cites Linux-kernel RCU on the one hand, but
also inspired the name QSBR for the original non-preemptible Linux-kernel
RCU implementation.

Mathieu Desnoyers created a user-space RCU for use in trac-
ing [Des09b, Des09a, DMS*12a, MDJ13f, MDJ13¢c, MDJ13b, MDJ13d,
MDJ13e, MDJ13h, MDJT13b, MDJ13g, MDJ13a, MDJT13a], which has
seen use in a number of projects [BD13].

Researchers at Charles University in Prague have also been working on
RCU implementations, including dissertations by Andrej Podzimek [Pod10]
and Adam Hraska [Hral3].

Yujie Liu (Lehigh University), Victor Luchangco (Oracle Labs), and
Michael Spear (also Lehigh) [LLS13] pressed scalable non-zero indicators
(SNZI) [ELLMO7] into service as a grace-period mechanism. The intended
use is to implement software transactional memory (see Section 17.2),
which imposes linearizability requirements, which in turn seems to limit
scalability.

RCU-like mechanisms are also finding their way into Java. Sivaramakr-
ishnan et al. [SZJ12] use an RCU-like mechanism to eliminate the read
barriers that are otherwise required when interacting with Java’s garbage
collector, resulting in significant performance improvements.

Ran Liu, Heng Zhang, and Haibo Chen of Shanghai Jiao Tong University
created a specialized variant of RCU that they used for an optimized
“passive reader-writer lock” [LZC14], similar to those created by Gautham
Shenoy [She06] and Srivatsa Bhat [Bhal4]. The Liu et al. paper is interesting
from a number of perspectives [McK14g].

Mike Ash posted [Ash15] a description of an RCU-like primitive in
Apple’s Objective-C runtime. This approach identifies read-side critical
sections via designated code ranges, thus qualifying as another method of
achieving zero read-side overhead, albeit one that poses some interesting
practical challenges for large read-side critical sections that span multiple
functions.

Pedro Ramalhete and Andreia Correia [RC15] produced “Poor Man’s
RCU”, which, despite using a pair of reader-writer locks, manages to provide
lock-free forward-progress guarantees to readers [MP15a].

420

Maya Arbel and Adam Morrison [AM15] produced “Predicate RCU”,
which works hard to reduce grace-period duration in order to efficiently
support algorithms that hold update-side locks across grace periods. This
results in reduced batching of updates into grace periods and reduced
scalability, but does succeed in providing short grace periods.

Quick Quiz 9.78: Why not just drop the lock before waiting for the grace period,
or using something like call_rcu() instead of waiting for a grace period? W

Alexander Matveev (MIT), Nir Shavit (MIT and Tel-Aviv University),
Pascal Felber (University of Neuchétel), and Patrick Marlier (also University
of Neuchitel) [MSFM15] produced an RCU-like mechanism that can be
thought of as software transactional memory that explicitly marks read-only
transactions. Their use cases require holding locks across grace periods,
which limits scalability [MP15a, MP15b]. This appears to be the first
academic RCU-related work to make good use of the rcutorture test
suite, and also the first to have submitted a performance improvement to
Linux-kernel RCU, which was accepted into v4.4.

Alexander Matveev’s RLU was followed up by MV-RLU from Jacho
Kim et al. [KMK*19]. This work improves scalability over RLU by
permitting multiple concurrent updates, by avoiding holding locks across
grace periods, and by using asynchronous grace periods, for example,
call_rcu() instead of synchronize_rcu(). This paper also made some
interesting performance-evaluation choices that are discussed further in
Section 17.2.3.3 on page 898.

Adam Belay et al. created an RCU implementation that guards the data
structures used by TCP/IP’s address-resolution protocol (ARP) in their IX
operating system [BPP*16].

Geoff Romer and Andrew Hunter (both at Google) proposed a cell-based
API for RCU protection of singleton data structures for inclusion in the C++
standard [RH18].

Dimitrios Siakavaras et al. have applied HTM and RCU to search
trees [SNGK17, SBN*20], Christina Giannoula et al. have used HTM and
RCU to color graphs [GGK18], and SeongJae Park et al. have used HTM
and RCU to optimize high-contention locking on NUMA systems.

421

Alex Kogan et al. applied RCU to the construction of range locking for
scalable address spaces [KDI20].

On June 17, 2023, the ISO C++ Standards committee voted RCU into
C++26 [MWM™*23a].

Production uses of RCU are listed in Section 9.6.3.3.

9.5.5.3 RCU Validation

In early 2017, it is commonly recognized that almost any bug is a potential
security exploit, so validation and verification are first-class concerns.

Researchers at Stony Brook University have produced an RCU-aware
data-race detector [Dugl0, Sey12, SRK*11]. Alexey Gotsman of IMDEA,
Noam Rinetzky of Tel Aviv University, and Hongseok Yang of the University
of Oxford have published a paper [GRY 12] expressing the formal semantics
of RCU in terms of separation logic, and have continued with other aspects
of concurrency.

Joseph Tassarotti (Carnegie-Mellon University), Derek Dreyer (Max
Planck Institute for Software Systems), and Viktor Vafeiadis (also
MPI-SWS) [TDV15] produced a manual formal proof of correctness
of the quiescent-state-based reclamation (QSBR) variant of userspace
RCU [Des09b, DMS*12a]. Lihao Liang (University of Oxford), Paul
E. McKenney (IBM), Daniel Kroening, and Tom Melham (both also Ox-
ford) [LMKM16] used the C bounded model checker (CBMC) [CKL04] to
produce a mechanical proof of correctness of a significant portion of Linux-
kernel Tree RCU. Lance Roy [Roy17] used CBMC to produce a similar
proof of correctness for a significant portion of Linux-kernel sleepable RCU
(SRCU) [McKO06]. Finally, Michalis Kokologiannakis and Konstantinos
Sagonas (National Technical University of Athens) [KS17a, KS19] used the
Nighugg tool [LSLK14] to produce a mechanical proof of correctness of a
somewhat larger portion of Linux-kernel Tree RCU.

None of these efforts located any bugs other than bugs injected into RCU
specifically to test the verification tools. In contrast, Alex Groce (Oregon
State University), Iftekhar Ahmed, Carlos Jensen (both also OSU), and
Paul E. McKenney (IBM) [GAJM15] automatically mutated Linux-kernel
RCU’s source code to test the coverage of the rcutorture test suite. The

422
effort found several holes in this suite’s coverage, one of which was hiding a
real bug (since fixed) in Tiny RCU.

With some luck, all of this validation work will eventually result in more
and better tools for validating concurrent code.

9.6 Which to Choose?

Choose always the way that seems the best, however
rough it may be; custom will soon render it easy and
agreeable.

PYTHAGORAS

Section 9.6.1 provides a high-level overview and then Section 9.6.2 provides
a more detailed view of the differences between the deferred-processing
techniques presented in this chapter. This discussion assumes a linked data
structure that is large enough that readers do not hold references from one
traversal to another, and where elements might be added to and removed
from the structure at any location and at any time. Section 9.6.3 then points
out a few publicly visible production uses of hazard pointers, sequence
locking, and RCU. This discussion should help you to make an informed
choice between these techniques.

9.6.1 Which to Choose? (Overview)

Table 9.10 shows a few high-level properties that distinguish the deferred-
reclamation techniques from one another.

The “Readers” row summarizes the results presented in Figure 9.22,
which shows that all but reference counting enjoy reasonably fast and
scalable readers.

The “Memory Overhead” row evaluates each technique’s need for
external storage with which to record reader protection. RCU relies on
quiescent states, and thus needs no storage to represent readers, whether
within or outside of the object. Reference counting can use a single integer
within each object in the structure, and no additional storage is required.

Table 9.10: Which Deferred Technique to Choose? (Overview)

Property Reference Counting Hazard Pointers Sequence Locks ~ RCU

Readers Slow and unscalable Fast and scalable Fast and scalable ~ Fast and scalable

Memory Overhead Counter per object Pointer per No protection None

reader per object

Duration of Protection Can be long Can be long No protection User must bound
duration

Need for Traversal If object deleted If object deleted If any update Never

Retries

Reclamation Timing Immediate Batching delays N/A Pre-existing readers
done plus batching
delays

Hazard pointers require external-to-object pointers be provisioned, and that
there be sufficient pointers for each CPU or thread to track all the objects
being referenced at any given time. Given that most hazard-pointer-based
traversals require only a few hazard pointers, this is not normally a problem in
practice. Of course, sequence locks provides no pointer-traversal protection,
which is why it is normally used on static data.

Quick Quiz 9.79: Why can’t users dynamically allocate the hazard pointers as
they are needed? H

The “Duration of Protection” describes constraints (if any) on how long
a period of time a user may protect a given object. Reference counting and
hazard pointers can both protect objects for extended time periods with no
untoward side effects, but maintaining an RCU reference to even one object
prevents all other RCU from being freed. RCU readers must therefore be
relatively short in order to avoid running the system out of memory, with
special-purpose implementations such as SRCU, Tasks RCU, and Tasks
Trace RCU being exceptions to this rule. Again, sequence locks provide no
pointer-traversal protection, which is why it is normally used on static data.

The “Need for Traversal Retries” row tells whether a new reference to
a given object may be acquired unconditionally, as it can with RCU, or
whether the reference acquisition can fail, resulting in a retry operation,
which is the case for reference counting, hazard pointers, and sequence
locks. In the case of reference counting and hazard pointers, retries are only
required if an attempt to acquire a reference to a given object while that

424

object is in the process of being deleted, a topic covered in more detail in
the next section. Sequence locking must of course retry its critical section
should it run concurrently with any update.

Quick Quiz 9.80: But don’t Linux-kernel kref reference counters allow
guaranteed unconditional reference acquisition? W

The “Reclamation Timing” gives the minimum delay from the time
that the last reader finishes with a removed object to the time that this
removed object may be freed. Reference counting is the only technique
capable of freeing immediately after the last reader finishes. This advantage
is of course the flip side of the big reference-counting disadvantage, that
its readers are slow and unscalable. In theory, hazard pointers could also
reclaim immediately, but in practice production-quality hazard-pointers
implementations use batching to amortize the overhead of scanning the
hazard pointers over many updates, and this batching incurs further delays.
RCU must wait for all pre-existing readers to complete, regardless of whether
or not those readers are in any way related to the newly removed object,
and then, as with hazard pointers, production-quality RCU implementations
incur additional delays due to batching.

Of course, different rows will have different levels of importance in
different situations. For example, if your current code is having read-side
scalability problems with hazard pointers, then it does not matter that hazard
pointers can require retrying reference acquisition because your current
code already handles this. Similarly, if response-time considerations already
limit the duration of reader traversals, as is often the case in kernels and
low-level applications, then it does not matter that RCU has duration-limit
requirements because your code already meets them. In the same vein,
if readers must already write to the objects that they are traversing, the
read-side overhead of reference counters might not be so important. Of
course, if the data to be protected is in statically allocated variables, then
sequence locking’s inability to protect pointers is irrelevant.

Finally, there is some work on dynamically switching between hazard
pointers and RCU based on dynamic sampling of delays [BGHZ16]. This
defers the choice between hazard pointers and RCU to runtime, and delegates
responsibility for the decision to the software.

Table 9.11: Which Deferred Technique to Choose? (Details)

Property Reference Counting Hazard Sequence RCU
Pointers Locks
Existence Guarantees Complex Yes No Yes
Updates and Readers Yes Yes No Yes
Progress Concurrently
Contention Among High None None None
Readers
Reader Per-Critical- N/A N/A Two Ranges from none
Section Overhead smp_mb () to two smp_mb ()
Reader Per-Object Read-modify-write atomic smp_mb () None, but None (volatile
Traversal Overhead operations, memory-barrier unsafe accesses)

instructions, and cache
misses

Reader Forward Progress ~ Lock free Lock free Blocking Bounded wait free
Guarantee (QSBR & urcu)
Reader Reference Can fail (conditional) Can fail Unsafe Cannot fail
Acquisition (conditional) (unconditional)
Memory Footprint Bounded Bounded Bounded Unbounded
Reclamation Forward Lock free Lock free N/A Blocking
Progress

Automatic Reclamation Yes Use Case N/A Use Case

Lines of Code 94 79 79 73

“This smp_mb () can be downgraded to a compiler barrier() by using the Linux-kernel
membarrier () system call.

Nevertheless, this table should be of great help when choosing between
these techniques. But those wishing more detail should continue on to the
next section.

9.6.2 Which to Choose? (Details)

Table 9.11 provides more-detailed rules of thumb that can help you choose
among the four deferred-processing techniques presented in this chapter.

As shown in the “Existence Guarantee” row, if you need existence
guarantees for linked data elements, you must use reference counting, hazard
pointers, or RCU. Sequence locks do not provide existence guarantees,
instead providing detection of updates, retrying any read-side critical sections
that do encounter an update.

426

Of course, as shown in the “Updates and Readers Progress Concurrently”
row, this detection of updates implies that sequence locking does not permit
updaters and readers to make forward progress concurrently. After all,
preventing such forward progress is the whole point of using sequence
locking in the first place! This situation points the way to using sequence
locking in conjunction with reference counting, hazard pointers, or RCU in
order to provide both existence guarantees and update detection. In fact, the
Linux kernel combines RCU and sequence locking in this manner during
pathname lookup.

The “Contention Among Readers”, “Reader Per-Critical-Section Over-
head”, and “Reader Per-Object Traversal Overhead” rows give a rough sense
of the read-side overhead of these techniques. The overhead of reference
counting can be quite large, with contention among readers along with a fully
ordered read-modify-write atomic operation required for each and every
object traversed. Hazard pointers incur the overhead of a memory barrier
for each data element traversed, and sequence locks incur the overhead of
a pair of memory barriers for each attempt to execute the critical section.
The overhead of RCU implementations vary from nothing to that of a
pair of memory barriers for each read-side critical section, thus providing
RCU with the best performance, particularly for read-side critical sections
that traverse many data elements. Of course, the read-side overhead of
all deferred-processing variants can be reduced by batching, so that each
read-side operation covers more data.

Quick Quiz 9.81: But didn’t the answer to one of the quick quizzes in Section 9.3
say that pairwise asymmetric barriers could eliminate the read-side smp_mb ()
from hazard pointers? Wl

The “Reader Forward Progress Guarantee” row shows that only RCU
has a bounded wait-free forward-progress guarantee, which means that it can
carry out a finite traversal by executing a bounded number of instructions.

Quick Quiz 9.82: Wait a minute!!! Linux-kernel RCU’s rcu_read_unlock ()
can do lock acquisitions, and that cannot possibly be wait-free! What are you
trying to pull??? H

The “Reader Reference Acquisition” row indicates that only RCU is
capable of unconditionally acquiring references. The entry for sequence

427

locks is “Unsafe” because, again, sequence locks detect updates rather than
acquiring references. Reference counting and hazard pointers both require
that traversals be restarted from the beginning if a given acquisition fails.
To see this, consider a linked list containing objects A, B, C, and D, in that
order, and the following series of events:

1. A reader acquires a reference to object B.

2. An updater removes object B, but refrains from freeing it because the
reader holds a reference. The list now contains objects A, C, and D,
and object B’s ->next pointer is set to HAZPTR_POISON.

3. The updater removes object C, so that the list now contains objects A
and D. Because there is no reference to object C, it is immediately
freed.

4. The reader tries to advance to the successor of the object following
the now-removed object B, but the poisoned ->next pointer prevents
this. Which is a good thing, because object B’s ->next pointer would
otherwise point to the freelist.

5. The reader must therefore restart its traversal from the head of the list.

Thus, when failing to acquire a reference, a hazard-pointer or reference-
counter traversal must restart that traversal from the beginning. In the case
of nested linked data structures, for example, a tree containing linked lists,
the traversal must be restarted from the outermost data structure. This
situation gives RCU a significant ease-of-use advantage.

However, RCU’s ease-of-use advantage does not come for free, as can
be seen in the “Memory Footprint” row. RCU’s support of unconditional
reference acquisition means that it must avoid freeing any object reachable
by a given RCU reader until that reader completes. RCU therefore has
an unbounded memory footprint, at least unless updates are throttled. In
contrast, reference counting and hazard pointers need to retain only those
data elements actually referenced by concurrent readers.

This tension between memory footprint and acquisition failures is
sometimes resolved within the Linux kernel by combining use of RCU and

428

reference counters. RCU is used for short-lived references, which means
that RCU read-side critical sections can be short. These short RCU read-side
critical sections in turn mean that the corresponding RCU grace periods can
also be short, which limits the memory footprint. For the few data elements
that need longer-lived references, reference counting is used. This means
that the complexity of reference-acquisition failure only needs to be dealt
with for those few data elements: The bulk of the reference acquisitions are
unconditional, courtesy of RCU. See Section 13.2 for more information on
combining reference counting with other synchronization mechanisms.

The “Reclamation Forward Progress” row shows that hazard pointers
can provide non-blocking updates [MicO4a, HLMO02]. Reference counting
might or might not, depending on the implementation. However, sequence
locking cannot provide non-blocking updates, courtesy of its update-side
lock. RCU updaters must wait on readers, which also rules out fully non-
blocking updates. However, there are situations in which the only blocking
operation is a wait to free memory, which results in a situation that, for
many purposes, is as good as non-blocking [DMS*12a].

As shown in the “Automatic Reclamation” row, only reference counting
can automate freeing of memory, and even then only for non-cyclic data
structures. Certain use cases for hazard pointers and RCU can provide
automatic reclamation using link counts, which can be thought of as reference
counts, but applying only to incoming links from other parts of the data
structure [Mic18].

Finally, the “Lines of Code” row shows the size of the Pre-BSD Routing
Table implementations, giving a rough idea of relative ease of use. That
said, it is important to note that the reference-counting and sequence-
locking implementations are buggy, and that a correct reference-counting
implementation is considerably more complex [Val95, MS95]. For its part,
a correct sequence-locking implementation requires the addition of some
other synchronization mechanism, for example, hazard pointers or RCU, so
that sequence locking detects concurrent updates and the other mechanism
provides safe reference acquisition.

As more experience is gained using these techniques, both separately
and in combination, the rules of thumb laid out in this section will need to
be refined. However, this section does reflect the current state of the art.

429
9.6.3 Which to Choose? (Production Use)

This section points out a few publicly visible production uses of hazard
pointers, sequence locking, and RCU. Reference counting is omitted, not
because it is unimportant, but rather because it is not only used pervasively,
but heavily documented in textbooks going back a half century. One of the
hoped-for benefits of listing production uses of these other techniques is to
provide examples to study—or to find bugs in, as the case may be.?

9.6.3.1 Production Uses of Hazard Pointers

In 2010, Keith Bostic added a variant of hazard pointers to
WiredTiger [Bos10]. MongoDB 3.0, released in 2015, included WiredTiger
and thus hazard pointers.

In 2011, Samy Al Bahra added hazard pointers to the Concurrency Kit
library [Bah11b].

In 2014, Maxim Khizhinsky added hazard pointers to libcds [Khil4].

In 2015, David Gwynne introduced shared reference pointers, a form of
hazard pointers, to OpenBSD [Gwy15].

In 2017-2018, the Rust-language arc-swap [Van18] and conc [cutl7]
crates rolled their own implementations of hazard pointers.

In 2018, Maged Michael added hazard pointers to Facebook’s Folly
library [Mic18], where it is used heavily.

9.6.3.2 Production Uses of Sequence Locking

The Linux kernel added sequence locking to v2.5.60 in 2003 [Cor03], having
been generalized from an ad-hoc technique used in x86’s implementation of
the gettimeofday () system call.

In 2011, Samy Al Bahra added sequence locking to the Concurrency
Kit library [Bah1Ic].

Paolo Bonzini added a simple sequence-lock to the QEMU emulator in
2013 [Bon13].

25 Kudos to Mathias Stearn, Matt Wilson, David Goldblatt, LiveJournal user fanf, Nadav
Har’El, Avi Kivity, Dmitry Vyukov, Raul Guitterez S., Twitter user @peo3, Paolo Bonzini,
and Thomas Monjalon for locating a great many of these use cases.

430

Alexis Menard abstracted a sequence-lock implementation in Chromium
in 2016 [Men16].

A simple sequence locking implementation was added to jemalloc ()
in 2018 [Gol18a]. The eigen library also has a special-purpose queue that
is managed by a mechanism resembling sequence locking.

9.6.3.3 Production Uses of RCU

IBM’s VM/XA is adopted passive serialization, a mechanism similar to
RCU, some time in the 1980s [HOS8&9].

DYNIX/ptx adopted RCU in 1993 [MS98a, SM95].

The Linux kernel adopted Dipankar Sarma’s implementation of RCU in
2002 [Tor02].

The userspace RCU project started in 2009 [Des09b].

The Knot DNS project started using the userspace RCU library in
2010 [Slo10]. That same year, the OSv kernel added an RCU implemen-
tation [Kiv13], later adding an RCU-protected linked list [Kiv14b] and an
RCU-protected hash table [Kiv14a].

In 2011, Samy Al Bahra added epochs (a form of RCU [Fra04, FHO7])
to the Concurrency Kit library [Bahl1a].

NetBSD began using the aforementioned passive serialization with v6.0
in 2012 [Thel2a]. Among other things, passive serialization is used in
NetBSD packet filter (NPF) [Ras14].

Paolo Bonzini added RCU support to the QEMU emulator in 2015 via a
friendly fork of the userspace RCU library [BD13, Bon15].

In 2015, Maxim Khizhinsky added RCU to libcds [Khil5].

Mindaugas Rasiukevicius implemented libgsbr in 2016, which features
QSBR and epoch-based reclamation (EBR) [Ras16], both of which are
types of implementations of RCU.

Sheth et al. [SWS16] demonstrated the value of leveraging Go’s garbage
collector to provide RCU-like functionality, and the Go programming
language provides a Value type that can provide this functionality.?®

26 See https://golang.org/pkg/sync/atomic/#Value, particularly the “Example
(ReadMostly)”.

https://golang.org/pkg/sync/atomic/#Value

431

Matt Klein describes an RCU-like mechanism that is used in the Envoy
Proxy [Klel7].

Honnappa Nagarahalli added an RCU library to the Data Plane Devel-
opment Kit (DPDK) in 2018 [Nag18].

Stjepan Glavina merged an epoch-based RCU implementation into
the crossbeam set of concurrency-support “crates” for the Rust lan-
guage [Glal8].

Jason Donenfeld produced an RCU implementations as part of his port
of WireGuard to Windows NT kernel [Don21].

Finally, any garbage-collected concurrent language (not just Go!) gets
the update side of an RCU implementation at zero incremental cost.

9.6.3.4 Summary of Production Uses

Perhaps the time will come when sequence locking, hazard pointers, and
RCU are all as heavily used and as well known as are reference counters.
Until that time comes, the current production uses of these mechanisms
should help guide the choice of mechanism as well as showing how best
to apply each of them. And with that, we have uncovered the last of the
mysteries put forth on page 300.

The next section discusses updates, a ticklish issue for many of the
read-mostly mechanisms described in this chapter.

9.7 What About Updates?

The only thing constant in life is change.

FRANCOIS DE LA ROCHEFOUCAULD

The deferred-processing techniques called out in this chapter are most
directly applicable to read-mostly situations, which begs the question “But
what about updates?” After all, increasing the performance and scalability
of readers is all well and good, but it is only natural to also want great
performance and scalability for writers.

432

We have already seen one situation featuring high performance and
scalability for writers, namely the counting algorithms surveyed in Chapter 5.
These algorithms featured partially partitioned data structures so that updates
can operate locally, while the more-expensive reads must sum across the
entire data structure. Silas Boyd-Wickhizer has generalized this notion to
produce OpLog, which he has applied to Linux-kernel pathname lookup,
VM reverse mappings, and the stat () system call [BW14].

Another approach, called “Disruptor”, is designed for applications that
process high-volume streams of input data. The approach is to rely on
single-producer-single-consumer FIFO queues, minimizing the need for
synchronization [Sut13]. For Java applications, Disruptor also has the virtue
of minimizing use of the garbage collector.

And of course, where feasible, fully partitioned or “sharded” systems
provide excellent performance and scalability, as noted in Chapter 6.

The next chapter will look at updates in the context of several types of
data structures.

Chapter 10
Data Structures

Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.

LiNnus TORVALDS

Serious discussions of algorithms include time complexity of their data

structures [CLRSO1]. However, for parallel programs, the time complexity

includes concurrency effects because these effects can be overwhelmingly

large, as shown in Chapter 3. In other words, a good programmer’s

data-structure relationships include those aspects related to concurrency.
This chapter will expose a number of complications:

1. Data structures designed in full accordance with the good advice
given in Chapter 6 can nonetheless abjectly fail to scale on some types
of systems.

2. Data structures designed in full accordance with the good advice
given in both Chapter 6 and Chapter 9 can stil/ abjectly fail to scale
on some types of systems.

3. Even read-only synchronization-free data-structure traversal can fail
to scale on some types of systems.

4. Data-structure traversals avoiding the aforementioned complications
can still be impeded by concurrent updates.

This chapter will investigate these complications and demostrate some
ways of unraveling them.

Section 10.1 presents the motivating application for this chapter’s data
structures. Chapter 6 showed how partitioning improves scalability, so
Section 10.2 discusses partitionable data structures. Chapter 9 described

434

how deferring some actions can greatly improve both performance and
scalability, a topic taken up by Section 10.3. Section 10.4 looks at a non-
partitionable data structure, splitting it into read-mostly and partitionable
portions, which improves both performance and scalability. Because this
chapter cannot delve into the details of every concurrent data structure,
Section 10.5 surveys a few of the important ones. Finally, Section 10.6
presents a summary of this chapter.

10.1 Motivating Application

The art of doing mathematics consists in finding that
special case which contains all the germs of
Zenerality.

DAviD HILBERT

We will use the Schrodinger’s Zoo application to evaluate perfor-
mance [McK13]. Schrodinger has a zoo containing a large number of
animals, and he would like to track them using an in-memory database with
each animal in the zoo represented by a data item in this database. Each
animal has a unique name that is used as a key, with a variety of data tracked
for each animal.

Births, captures, and purchases result in insertions, while deaths, releases,
and sales result in deletions. Because Schrodinger’s zoo contains a large
quantity of short-lived animals, including mice and insects, the database
must handle high update rates. Those interested in Schrédinger’s animals
can query them, and Schrodinger has noted suspiciously query rates for his
cat, so much so that he suspects that his mice might be checking up on their
nemesis. Whatever their source, Schrodinger’s application must handle high
query rates to a single data element.

As we will see, this simple application can pose a challenge to traditional
concurrent data structures.

10.2 Partitionable Data Structures

Finding a way to live the simple life today is the
most complicated task.

HENRY A. COURTNEY, UPDATED

There are a huge number of data structures in use today, so much so that there
are multiple textbooks covering them. This section focuses on a single data
structure, namely the hash table. This focused approach allows a much deeper
investigation of how concurrency interacts with data structures, and also
focuses on a data structure that is heavily used in practice. Section 10.2.1
overviews the design, and Section 10.2.2 presents the implementation.
Finally, Section 10.2.3 discusses the resulting performance and scalability.

10.2.1 Hash-Table Design

Chapter 6 emphasized the need to apply partitioning in order to attain
respectable performance and scalability, so partitionability must be a first-
class criterion when selecting data structures. This criterion is well satisfied
by that workhorse of parallelism, the hash table. Hash tables are conceptually
simple, consisting of an array of hash buckets. A hash function maps from
a given element’s key to the hash bucket that this element will be stored
in. Each hash bucket therefore heads up a linked list of elements, called
a hash chain. When properly configured, these hash chains will be quite
short, permitting a hash table to access its elements extremely efficiently.

Quick Quiz 10.1: But chained hash tables are but one type of many. Why the
focus on chained hash tables? H

In addition, each bucket has its own lock, so that elements in different
buckets of the hash table may be added, deleted, and looked up completely
independently. A large hash table with a large number of buckets (and thus
locks), with each bucket containing a small number of elements should
therefore provide excellent scalability.

This approach solves the element-count issue called out in Section 2.4.6
by refraining from returning any count of the number of elements in the hash

436

table from either hashtab_add () orhashtab_del (). It further simplifies
the API by allowing duplicate elements and by passing a pointer to the
element to be deleted to hashtab_del (). These two changes eliminate
the possibility of error returns, which means that the hashtab_add () and
hashtab_del () functions’ return types can be void.

10.2.2 Hash-Table Implementation

Listing 10.1 (hash_bkt . c) shows a set of data structures used in a simple
fixed-sized hash table using chaining and per-hash-bucket locking, and
Figure 10.1 diagrams how they fit together. Note that the cds_ functions
and data structures may be found in the userspace RCU library [Des09b,
MDIJ13d, MDJ13e, MDJ13a]. The hashtab structure (lines 11-15 in
Listing 10.1) contains four ht_bucket structures (lines 6-9 in Listing 10.1),
with the ->ht_nbuckets field controlling the number of buckets and the
->ht_cmp field holding the pointer to key-comparison function. Each such
bucket contains a list header ->htb_head and a lock ->htb_lock. The
list headers chain ht_elem structures (lines 1—4 in Listing 10.1) through
their ->hte_next fields, and each ht_elem structure also caches the
corresponding element’s hash value in the ->hte_hash field. The ht_elem
structure is included in a larger structure which might contain a complex
key. Figure 10.1 shows bucket O containing two elements and bucket 2
containing one.

Listing 10.2 shows mapping and locking functions. Lines 1 and 2 show
the macro HASH2BKT (), which maps from a hash value to the corresponding
ht_bucket structure. This macro uses a simple modulus: If more aggressive
hashing is required, the caller needs to implement it when mapping from
key to hash value. The remaining two functions acquire and release the
->htb_lock corresponding to the specified hash value.

Listing 10.3 shows hashtab_lookup (), which returns a pointer to the
element with the specified hash and key, or NULL if that element does not
exist. This function takes both a hash value and a pointer to the key because
this allows users of this function to use arbitrary keys and arbitrary hash
functions. Line 8 maps from the hash value to a pointer to the corresponding
hash bucket. Each pass through the loop spanning lines 9-14 examines one

Listing 10.1: Hash-Table Data Structures

struct ht_elem {
struct cds_list_head hte_next;
unsigned long hte_hash;

};

struct ht_bucket {

1
2
3
4
5
6
7 struct cds_list_head htb_head;
8 spinlock_t htb_lock;

9 };

11 struct hashtab {

12 unsigned long ht_nbuckets;

13 int (*ht_cmp) (struct ht_elem *htep, void *key);
14 struct ht_bucket ht_bkt[0];

struct hashtab
->ht_nbuckets = 4

->ht_cmp

—>ht_bkt[0] struct ht_elem struct ht_elem

—>htb_head ->hte_next —->hte_next
—>htb_lock ->hte_hash —>hte_hash

—>ht_bki[1]

->htb_head
—>htb_lock

->ht_bki[2] struct ht_elem

—>htb_head —>hte_next
—>htb_lock ->hte_hash

->ht_bk([3]

—>htb_head
—>htb_lock

Figure 10.1: Hash-Table Data-Structure Diagram

Listing 10.2: Hash-Table Mapping and Locking
#define HASH2BKT (htp, h) \

1

2 (&(htp)->ht_bkt[h % (htp)->ht_nbuckets])

3

4 static void hashtab_lock(struct hashtab *htp,

5 unsigned long hash)

6 {

7 spin_lock (§HASH2BKT (htp, hash)->htb_lock);
8 }

9

10 static void hashtab_unlock(struct hashtab *htp,

1 unsigned long hash)

12 {

13 spin_unlock (§HASH2BKT (htp, hash)->htb_lock) ;
14 ¥

Listing 10.3: Hash-Table Lookup

struct ht_elem *

1
2 hashtab_lookup(struct hashtab *htp, unsigned long hash,

3 void *key)

4+ 1

5 struct ht_bucket *htb;

6 struct ht_elem *htep;

7

8 htb = HASH2BKT (htp, hash);

9 cds_list_for_each_entry(htep, &htb->htb_head, hte_next) {
10 if (htep->hte_hash != hash)

11 continue;

12 if (htp->ht_cmp(htep, key))

13 return htep;

14 ¥

15 return NULL;

16}

element of the bucket’s hash chain. Line 10 checks to see if the hash values
match, and if not, line 11 proceeds to the next element. Line 12 checks
to see if the actual key matches, and if so, line 13 returns a pointer to the
matching element. If no element matches, line 15 returns NULL.

Quick Quiz 10.2: But isn’t the double comparison on lines 10-13 in Listing 10.3
inefficient in the case where the key fits into an unsigned long? W

Listing 10.4 shows the hashtab_add () and hashtab_del () functions
that add and delete elements from the hash table, respectively.

439

Listing 10.4: Hash-Table Modification

void hashtab_add(struct hashtab *htp, unsigned long hash,

1

2 struct ht_elem *htep)

3 {

4 htep->hte_hash = hash;

5 cds_list_add(&htep->hte_next,

6 &HASH2BKT (htp, hash)->htb_head) ;
7}

8

9 void hashtab_del(struct ht_elem *htep)

10 {

11 cds_list_del_init(&htep->hte_next);
12}

The hashtab_add () function simply sets the element’s hash value
on line 4, then adds it to the corresponding bucket on lines 5 and 6.
The hashtab_del () function simply removes the specified element from
whatever hash chain it is on, courtesy of the doubly linked nature of the
hash-chain lists. Before calling either of these two functions, the caller is
required to ensure that no other thread is accessing or modifying this same
bucket, for example, by invoking hashtab_lock () beforehand.

Listing 10.5 shows hashtab_alloc() and hashtab_free (), which
do hash-table allocation and freeing, respectively. Allocation begins on
lines 8-9 with allocation of the underlying memory. If line 10 detects that
memory has been exhausted, line 11 returns NULL to the caller. Otherwise,
lines 12 and 13 initialize the number of buckets and the pointer to key-
comparison function, and the loop spanning lines 14—17 initializes the
buckets themselves, including the chain list header on line 15 and the lock
on line 16. Finally, line 18 returns a pointer to the newly allocated hash
table. The hashtab_free () function on lines 21-24 is straightforward.

10.2.3 Hash-Table Performance

The performance results for a single 28-core socket of a 2.1 GHz Intel Xeon
system using a bucket-locked hash table with 262,144 buckets are shown in
Figure 10.2. The performance does scale nearly linearly, but falls far short
ideal, even at only 28 CPUs. Part of this shortfall is due to the fact that lock

440

Listing 10.5: Hash-Table Allocation and Free

struct hashtab *

1

2 hashtab_alloc(unsigned long nbuckets,

3 int (*cmp) (struct ht_elem *htep, void *key))
4 {

5 struct hashtab *htp;

6 int i;

7

8 htp = malloc(sizeof (*htp) +

9 nbuckets * sizeof (struct ht_bucket));
10 if (htp == NULL)

11 return NULL;

12 htp->ht_nbuckets = nbuckets;

13 htp->ht_cmp = cmp;

14 for (i = 0; i < nbuckets; i++) {

15 CDS_INIT_LIST_HEAD(&htp->ht_bkt[i] .htb_head);
16 spin_lock_init (&htp->ht_bkt[i].htb_lock);
17 b

18 return htp;

19 }

20

21 void hashtab_free(struct hashtab xhtp)

2 {

2 free(htp) ;

24}

1.4X106 T T T T T
2 1.2x10° |
o
3
2 1x108
=
> 800000 |-
o
(2]
S 600000 |-
X
[e]
S 400000 [~
=
S 200000 -
bucket
o i | | | |

5 10 15 20 25
Number of CPUs (Threads)

Figure 10.2: Read-Only Hash-Table Performance For Schrodinger’s Zoo

441
250000

200000 (-} .

150000 |5 N .

100000 |

50000 |- R

Total Lookups per Millisecond

0 [I R N IR R |
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 10.3: Read-Only Hash-Table Performance For Schrodinger’s Zoo,
448 CPUs

acquisitions and releases incur communications cache misses only on two
or more CPUs.

And things only get worse with more CPUs, as can be seen in Figure 10.3.
We do not need to show ideal performance: The performance for 29 CPUs
and beyond is abysmal. This clearly underscores the dangers of extrapolating
performance from a modest number of CPUs.

Of course, one possible reason for the collapse in performance might
be that more hash buckets are needed. We can test this by increasing the
number of hash buckets.

Quick Quiz 10.3: Instead of simply increasing the number of hash buckets,
wouldn’t it be better to cache-align the existing hash buckets? W

However, as can be seen in Figure 10.4, changing the number of buckets
has almost no effect: Scalability is still abysmal. In particular, we still
see a sharp dropoft at 29 CPUs and beyond, clearly demonstrating the
complication put forward by item 1 of the list of complications on page 433.
Clearly, something else is going on.

The problem is that this is a multi-socket system, with CPUs 0-27
and 224-251 mapped to the first socket as shown in Table 10.1. Test

442
250000

200000

150000

100000

50000

Total Lookups per Millisecond

[I R N IR R |
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 10.4: Read-Only Hash-Table Performance For Schrodinger’s Zoo,
Varying Buckets

runs confined to the first 28 CPUs therefore perform quite well, but tests
that involve socket 0’s CPUs 0-27 as well as socket 1’s CPU 28 incur
the overhead of passing data across socket boundaries. This can severely
degrade performance, as was discussed in Section 3.2.1. In short, large
multi-socket systems require good locality of reference in addition to full
partitioning. The remainder of this chapter will discuss ways of providing
good locality of reference within the hash table itself, but in the meantime
please note that one other way to provide good locality of reference would
be to place large data elements in the hash table. For example, Schrodinger
might attain excellent cache locality by placing photographs or even videos
of his animals in each element of the hash table. But for those needing hash
tables containing small data elements, please read on!

Quick Quiz 10.4: Given the negative scalability of the Schrodinger’s Zoo
application across sockets, why not just run multiple copies of the application,
with each copy having a subset of the animals and confined to run on a single
socket? W

One key property of these Schrodinger’s-zoo experiments is they are all
read-only. This makes the performance degradation due to lock-acquisition-

443
Table 10.1: NUMA Topology of System Under Test

Hyperthread
Socket 0 : 1
0 0-27 i 224-251
|| 28-55 ©252-279
2| 56-83 280307
3 || 84111 : 308-335
4 | 112-139 7 336-363
5 || 140-167 : 364-391
6 || 168-195 i 392-419
7 || 196-223 i 420-447

induced cache misses all the more painful. Even though we are not updating
the underlying hash table itself, we are still paying the price for writing
to memory. Of course, if the hash table was never going to be updated,
we could dispense entirely with mutual exclusion. This approach is quite
straightforward and is left as an exercise for the reader. But even with
the occasional update, avoiding writes avoids cache misses, and allows
the read-mostly data to be replicated across all the caches, which in turn
promotes locality of reference.

The next section therefore examines optimizations that can be carried
out in read-mostly cases where updates are rare, but could happen at any
time.

444

Listing 10.6: RCU-Protected Hash-Table Read-Side Concurrency Control

1 static void hashtab_lock_lookup(struct hashtab *htp,
2 unsigned long hash)

{

rcu_read_lock();

}

static void hashtab_unlock_lookup(struct hashtab *htp,
unsigned long hash)
{

rcu_read_unlock();

[R T - N)

}

10.3 Read-Mostly Data Structures

Adapt the remedy to the disease.

CHINESE PROVERB

Although partitioned data structures can offer excellent scalability, NUMA
effects can result in severe degradations of both performance and scalability.
In addition, the need for read-side synchronization can degrade performance
in read-mostly situations. However, we can achieve both performance and
scalability by using RCU, which was introduced in Section 9.5. Similar
results can be achieved using hazard pointers (hazptr. c) [Mic04a], which
will be included in the performance results shown in this section [McK13].

10.3.1 RCU-Protected Hash Table Implementation

For an RCU-protected hash table with per-bucket locking, updaters use
locking as shown in Section 10.2, but readers use RCU. The data structures re-
main as shown in Listing 10.1, and the HASH2BKT (), hashtab_lock(), and
hashtab_unlock() functions remain as shown in Listing 10.2. However,
readers use the lighter-weight concurrency-control embodied by hashtab_
lock_lookup() and hashtab_unlock_lookup() shown in Listing 10.6.

Listing 10.7 shows hashtab_lookup() for the RCU-protected per-
bucket-locked hash table. This is identical to that in Listing 10.3 ex-
cept that cds_list_for_each_entry() is replaced by cds_list_for_

445

Listing 10.7: RCU-Protected Hash-Table Lookup

struct ht_elem *hashtab_lookup(struct hashtab *htp,
unsigned long hash,

1

2

3 void *key)

4+ 1

5 struct ht_bucket *htb;

6 struct ht_elem *htep;

7

3 htb = HASH2BKT (htp, hash);

9 cds_list_for_each_entry_rcu(htep,

10 &htb->htb_head,
1 hte_next) {
12 if (htep->hte_hash != hash)

13 continue;

14 if (htp->ht_cmp(htep, key))

15 return htep;

16 3

17 return NULL;

18 ¥

each_entry_rcu(). Both of these primitives traverse the hash chain
referenced by htb->htb_head but cds_list_for_each_entry_rcu()
also correctly enforces memory ordering in case of concurrent insertion.
This is an important difference between these two hash-table implementa-
tions: Unlike the pure per-bucket-locked implementation, the RCU protected
implementation allows lookups to run concurrently with insertions and
deletions, and RCU-aware primitives like cds_list_for_each_entry_
rcu() are required to correctly handle this added concurrency. Note also
that hashtab_lookup () ’s caller must be within an RCU read-side critical
section, for example, the caller must invoke hashtab_lock_lookup ()
before invoking hashtab_lookup() (and of course invoke hashtab_
unlock_lookup() some time afterwards).

Quick Quiz 10.5: But if elements in a hash table can be removed concurrently
with lookups, doesn’t that mean that a lookup could return a reference to a data
element that was removed immediately after it was looked up? H

Listing 10.8 shows hashtab_add() and hashtab_del (), both of
which are quite similar to their counterparts in the non-RCU hash table
shown in Listing 10.4. The hashtab_add() function uses cds_list_
add_rcu() instead of cds_list_add () in order to ensure proper ordering

446

Listing 10.8: RCU-Protected Hash-Table Modification
void hashtab_add(struct hashtab *htp,

1
2 unsigned long hash,

3 struct ht_elem *htep)

4 {

5 htep->hte_hash = hash;

6 cds_list_add_rcu(&htep->hte_next,

7 &HASH2BKT (htp, hash)->htb_head);
s }

9

10 void hashtab_del(struct ht_elem *htep)

n 1

12 cds_list_del_rcu(&htep->hte_next);
13}

when an element is added to the hash table at the same time that it is
being looked up. The hashtab_del() function uses cds_list_del_
rcu() instead of cds_1list_del_init () to allow for the case where an
element is looked up just before it is deleted. Unlike cds_list_del_
init(), cds_list_del_rcu() leaves the forward pointer intact, so that
hashtab_lookup () can traverse to the newly deleted element’s successor.

Of course, after invoking hashtab_del (), the caller must wait for an
RCU grace period (e.g., by invoking synchronize_rcu()) before freeing
or otherwise reusing the memory for the newly deleted element.

10.3.2 RCU-Protected Hash Table Validation

Although the topic of validation is covered in detail in Chapter 11, the fact
is that a hash table with lockless RCU-protected lookups needs special
attention to validation sooner rather than later.

The test suite (“hashtorture.h”) contains a smoketest () function
that verifies that a specific series of single-threaded additions, deletions, and
lookups give the expected results.

Concurrent test runs put each updater thread in control of its portion of
the elements, which allows assertions checking for the following issues:

1. A just-now-to-be-added element already being in the table according
to hastab_lookup().

447

2. A just-now-to-be-added element being marked as being in the table
by its ->in_table flag.

3. A just-now-to-be-deleted element not being in the table according to
hastab_lookup().

4. A just-now-to-be-deleted element being marked as not being in the
table by its ->in_table flag.

In addition, concurrent test runs run lookups concurrently with updates
in order to catch all manner of data-structure corruption problems. Some
runs also continually resize the hash table concurrently with both lookups
and updates to verify correct behavior, and also to verify that resizes do not
unduly delay either readers or updaters.

Finally, the concurrent tests output statistics that can be used to track
down performance and scalabilty issues, which provides the raw data used
by Section 10.3.3.

Quick Quiz 10.6: The hashtorture.h file contains more than 1,000 lines! Is
that a comprehensive test or what???

All code requires significant validation effort, and high-performance
concurrent code requires more validation than most.

10.3.3 RCU-Protected Hash Table Performance

Figure 10.5 shows the read-only performance of RCU-protected and hazard-
pointer-protected hash tables against the previous section’s per-bucket-locked
implementation. As you can see, both RCU and hazard pointers perform
and scale much better than per-bucket locking because read-only replication
avoids NUMA effects. The difference increases with larger numbers of
threads. Results from a globally locked implementation are also shown, and
as expected the results are even worse than those of the per-bucket-locked
implementation. RCU does slightly better than hazard pointers.

Figure 10.6 shows the same data on a linear scale. This drops the
global-locking trace into the x-axis, but allows the non-ideal performance
of RCU and hazard pointers to be more readily discerned. Both show a

448

1x10® ————r————1——

B 5 :
3 1x10” | 3
o E S 3
= L ideal 0 =]
?\ 2

% 1x10° E o 3
[0 F E
Qo L]
2 100000 £ bucket -
2 a ;
] <.]
S 10000 | e
(o] E E
= F e]
1000 IR | IR | L

1 10 100

Number of CPUs (Threads)

Figure 10.5: Read-Only RCU-Protected Hash-Table Performance For
Schrodinger’s Zoo

2.2x107
7
D 2x10
S 1.8x10" 1
2 1.6x10” [1
S 14x10” | ideal
g 1.2x10" |- -
g 1xi10’ | :
2 6]
g exio
3 ex10® f
T a0l RCU -
F 2x10° - e T T hazptr
g ani I I N MO N B

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 10.6: Read-Only RCU-Protected Hash-Table Performance For
Schrodinger’s Zoo, Linear Scale

449

2.2x107
7
D 2x10
S 1.8x10" |- 1
2 1.6x10" [1
S 14x10” | ideal
g 1.2x10" | .
2 1x107 | -
2 6
g e’ -
= ex10° | .
g 4x10°
x108 - -
o il | | | | | |

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 10.7: Read-Only RCU-Protected Hash-Table Performance For
Schrodinger’s Zoo including QSBR, Linear Scale

change in slope at 224 CPUs, and this is due to hardware multithreading. At
224 and fewer CPUs, each thread has a core to itself. In this regime, RCU
does better than does hazard pointers because the latter’s read-side memory
barriers result in dead time within the core. In short, RCU is better able to
utilize a core from a single hardware thread than is hazard pointers.

This situation changes above 224 CPUs. Because RCU is using more
than half of each core’s resources from a single hardware thread, RCU gains
relatively little benefit from the second hardware thread in each core. The
slope of the hazard-pointers trace also decreases at 224 CPUs, but less
dramatically, because the second hardware thread is able to fill in the time
that the first hardware thread is stalled due to memory-barrier latency. As
we will see in later sections, this second-hardware-thread advantage depends
on the workload.

But why is RCU’s performance a factor of five less than ideal? One
possibility is that the per-thread counters manipulated by rcu_read_lock()
and rcu_read_unlock() are slowing things down. Figure 10.7 therefore
adds the results for the QSBR variant of RCU, whose read-side primitives

2.2x107
2x107 |-
1.8x107 | -
1.6x107 - -
1.4x107 ideal
1.2x107 -
1x107 | -
8x10°% |- -
6x10°
4x10°
2x10°

Total Lookups per Millisecond

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 10.8: Read-Only RCU-Protected Hash-Table Performance For
Schrodinger’s Zoo including QSBR and Unsynchronized, Linear Scale

do nothing. And although QSBR does perform slightly better than does
RCU, it is still about a factor of five short of ideal.

Figure 10.8 adds completely unsynchronized results, which works
because this is a read-only benchmark with nothing to synchronize. Even
with no synchronization whatsoever, performance still falls far short of ideal,
thus demonstrating items 2 and 3 of the list of complications on page 433.

The problem is that this system has sockets with 28 cores, which have
the modest cache sizes shown in Table 3.2 on page 59. Each hash bucket
(struct ht_bucket) occupies 56 bytes and each element (struct zoo_
he) occupies 72 bytes for the RCU and QSBR runs. The benchmark
generating Figure 10.8 used 262,144 buckets and up to 262,144 elements,
for a total of 33,554,448 bytes, which not only overflows the 1,048,576-byte
L2 caches by more than a factor of thirty, but is also uncomfortably close to
the L3 cache size of 40,370,176 bytes, especially given that this cache has
only 11 ways. This means that L2 cache collisions will be the rule and also
that L3 cache collisions will not be uncommon, so that the resulting cache
misses will degrade performance. In this case, the bottleneck is not in the
CPU, but rather in the memory system.

451

Additional evidence for this memory-system bottleneck may be found
by examining the unsynchronized code. This code does not need locks,
so each hash bucket occupies only 16 bytes compared to the 56 bytes for
RCU and QSBR. Similarly, each hash-table element occupies only 56 bytes
compared to the 72 bytes for RCU and QSBR. So it is unsurprising that the
single-CPU unsynchronized run performs up to about half again faster than
that of either QSBR or RCU.

Quick Quiz 10.7: How can we be so sure that the hash-table size is at fault here,
especially given that Figure 10.4 on page 442 shows that varying hash-table size
has almost no effect? Might the problem instead be something like false sharing?

What if the memory footprint is reduced still further? Figure E.5 on
page 1206 shows that RCU attains very nearly ideal performance on the
much smaller data structure represented by the pre-BSD routing table.

Quick Quiz 10.8: The memory system is a serious bottleneck on this big system.
Why bother putting 448 CPUs on a system without giving them enough memory
bandwidth to do something useful???

As noted earlier, Schrodinger is surprised by the popularity of his
cat [Sch35], but recognizes the need to reflect this popularity in his design.
Figure 10.9 shows the results of 64-CPU runs, varying the number of
CPUs that are doing nothing but looking up the cat. Both RCU and hazard
pointers respond well to this challenge, but bucket locking scales negatively,
eventually performing as badly as global locking. This should not be a
surprise because if all CPUs are doing nothing but looking up the cat, the
lock corresponding to the cat’s bucket is for all intents and purposes a global
lock.

This cat-only benchmark illustrates one potential problem with fully
partitioned sharding approaches. Only the CPUs associated with the cat’s
partition is able to access the cat, limiting the cat-only throughput. Of
course, a great many applications have good load-spreading properties,
and for these applications sharding works quite well. However, sharding
does not handle “hot spots” very well, with the hot spot exemplified by
Schrodinger’s cat being but one case in point.

1x107 g —rr —

2 oot o
8 F RCU _.—~ .-~ E
o I []
£ 100000 | S =
= E hazptr E
8 10000 =
2 F B b <o
2 I bucket _— A
< 1000 £ - .
<] E - 3
— o -]
© [.- i
S 100 £~ global
10 L | A

1 10

1x107
T 1x108
o
[8]
[0}
(2]
= 100000
s
o
o
@ 10000
Q
o)
X
]
3 1000
100

Number of CPUs Looking Up The Cat

Figure 10.9: Read-Side Cat-Only RCU-Protected Hash-Table Performance
For Schrodinger’s Zoo at 64 CPUs

i RCU 1
E hazptr N3
i i
fommmmm e o
= bucket ke
f E
L global ™ g
i \ E
L]
1 10 100

Number of CPUs Doing Updates

Figure 10.10: Read-Side RCU-Protected Hash-Table Performance For
Schrédinger’s Zoo in the Presence of Updates

1x108

T3
b bucket -
= 100000 | S
o F =
[$] o -
[0] - i
(2]
= 10000 | E
= F E
I} L P]
Q -7 .
1%} 1000 k- . R -
Q F. e E
g F T]
5 100 /"/'/ global E
jolb——t g
1 10 100

Number of CPUs Doing Updates

Figure 10.11: Update-Side RCU-Protected Hash-Table Performance For
Schrédinger’s Zoo

If we were only ever going to read the data, we would not need any
concurrency control to begin with. Figure 10.10 therefore shows the effect
of updates on readers. At the extreme left-hand side of this graph, all but
one of the CPUs are doing lookups, while to the right all 448 CPUs are
doing updates. For all four implementations, the number of lookups per
millisecond decreases as the number of updating CPUs increases, of course
reaching zero lookups per millisecond when all 448 CPUs are updating.
Both hazard pointers and RCU do well compared to per-bucket locking
because their readers do not increase update-side lock contention. RCU
does well relative to hazard pointers as the number of updaters increases
due to the latter’s read-side memory barriers, which incur greater overhead,
especially in the presence of updates, and particularly when execution
involves more than one socket. It therefore seems likely that modern
hardware heavily optimizes memory-barrier execution, greatly reducing
memory-barrier overhead in the read-only case.

Where Figure 10.10 showed the effect of increasing update rates on
lookups, Figure 10.11 shows the effect of increasing update rates on the
updates themselves. Again, at the left-hand side of the figure all but one

454

of the CPUs are doing lookups and at the right-hand side of the figure
all 448 CPUs are doing updates. Hazard pointers and RCU start off with
a significant advantage because, unlike bucket locking, readers do not
exclude updaters. However, as the number of updating CPUs increases,
the update-side deferred-execution overhead starts to make its presence
known, first for RCU and then for hazard pointers. Of course, all three of
these implementations beat global locking, and by more than an order of
magnitude.

It is quite possible that the differences in lookup performance observed
in Figure 10.10 are affected by the differences in update rates. One way to
check this is to artificially throttle the update rates of per-bucket locking
and hazard pointers to match that of RCU. Doing so does not significantly
improve the lookup performance of per-bucket locking, nor does it close
the gap between hazard pointers and RCU. However, removing the read-
side memory barriers from hazard pointers (thus resulting in an unsafe
implementation) does nearly close the gap between hazard pointers and RCU.
Although this unsafe hazard-pointer implementation will usually be reliable
enough for benchmarking purposes, it is absolutely not recommended for
production use.

Quick Quiz 10.9: The dangers of extrapolating from 28 CPUs to 448 CPUs was
made quite clear in Section 10.2.3. Would extrapolating up from 448 CPUs be any
safer? I

And this situation demonstrates item 4 in the list complications on
page 433.

10.3.4 RCU-Protected Hash Table Discussion

One consequence of the RCU and hazard-pointer implementations is that
a pair of concurrent readers might disagree on the state of the cat. For
example, one of the readers might have fetched the pointer to the cat’s data
structure just before it was removed, while another reader might have fetched
this same pointer just afterwards. The first reader would then believe that
the cat was alive, while the second reader would believe that the cat was
dead.

| think the poor
thing has expired

Where there is a brain-
wave, there is a way

Figure 10.12: Even Veterinarians Disagree!

This situation is completely fitting for Schrodinger’s cat, but it turns out
that it is quite reasonable for normal non-quantum cats as well. After all, it
is impossible to determine exactly when an animal is born or dies.

To see this, let’s suppose that we detect a cat’s death by heartbeat. This
raise the question of exactly how long we should wait after the last heartbeat
before declaring death. It is clearly ridiculous to wait only one millisecond,
because then a healthy living cat would have to be declared dead—and then
resurrected—more than once per second. It is equally ridiculous to wait a
full month, because by that time the poor cat’s death would be unmistakeably
apparent to olfactory sensors.

Because an animal’s heart can stop for some seconds and then start up
again, there is a tradeoff between timely recognition of death and probability
of false alarms. It is quite possible that a pair of veterinarians might disagree
on the time to wait between the last heartbeat and the declaration of death.
For example, one veterinarian might declare death thirty seconds after the
last heartbeat, while another might insist on waiting a full minute. In this
case, the two veterinarians would disagree on the state of the cat for the
second period of thirty seconds following the last heartbeat, as fancifully
depicted in Figure 10.12.

456

Heisenberg taught us to live with this sort of uncertainty [Hei27], which
is a good thing because computing hardware and software acts similarly.
For example, how do you know that a piece of computing hardware has
failed? Often because it does not respond in a timely fashion. Just like the
cat’s heartbeat, this results in a window of uncertainty as to whether or not
the hardware has really failed, as opposed to just being slow.

Furthermore, most computing systems are intended to interact with
the outside world. Consistency with the outside world is therefore of
paramount importance. However, as we saw in Figure 9.28 on page 399,
increased internal consistency can come at the expense of degraded external
consistency. Techniques such as RCU and hazard pointers give up some
degree of internal consistency to attain improved external consistency.

In short, internal consistency is not necessarily a natural part of all
problem domains, and often incurs great expense in terms of performance,
scalability, consistency with the outside world [HKLP12, HHK*13, Rin13],
or all of the above.

10.4 Non-Partitionable Data Structures

Don’t be afraid to take a big step if one is indicated.
You can’t cross a chasm in two small steps.

DaviD LLoYyD GEORGE

Fixed-size hash tables are perfectly partitionable, but resizable hash tables
pose partitioning challenges when growing or shrinking, as fancifully
depicted in Figure 10.13. However, it turns out that it is possible to construct
high-performance scalable RCU-protected hash tables, as described in the
following sections.

10.4.1 Resizable Hash Table Design

In happy contrast to the situation in the early 2000s, there are now several
different types of scalable RCU-protected hash tables. The first (and
simplest) was developed for the Linux kernel by Herbert Xu [Xul0], and

Asaak!

[t's... growing!

I Pa rtitioner

Figure 10.13: Partitioning Problems

Bucket 0 | Bucket 1

\
Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 Links 1 Links 1
A B Cc D

Figure 10.14: Growing a Two-List Hash Table, State (a)

is described in the following sections. Two others are covered briefly in
Section 10.4.4.

The key insight behind the first hash-table implementation is that each
data element can have two sets of list pointers, with one set currently being
used by RCU readers (as well as by non-RCU updaters) and the other being
used to construct a new resized hash table. This approach allows lookups,

insertions, and deletions to all run concurrently with a resize operation (as
well as with each other).

v2025.12.18a

457

Bucket 0 | Bucket 1

Y
Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 P Links 1 Links 1
A C D
'
i
i
i

1

S

e o g e e g i e

1 Bucket 0 { Bucket 1 { Bucket 2 l Bucket 3 :
| PRSYNSRI S PEp—— P ————

Figure 10.15: Growing a Two-List Hash Table, State (b)

[= e g e g
1 BucketOTBuckeH 1
L

.
\

.

S —
I

Links 0 Links 0 P Links 0 | Links 0
Links 1 Links 1 | Links 1 Links 1
A B Cc D

A

I Bucket 0 I Bucket 1 I Bucket 2 I Bucket 3 I

Figure 10.16: Growing a Two-List Hash Table, State (c)

The resize operation proceeds as shown in Figures 10.14-10.17, with
the initial two-bucket state shown in Figure 10.14 and with time advancing
from figure to figure. The initial state uses the zero-index links to chain
the elements into hash buckets. A four-bucket array is allocated, and the
one-index links are used to chain the elements into these four new hash
buckets. This results in state (b) shown in Figure 10.15, with readers still
using the original two-bucket array.

Links 0 Links 0 | Links 0 | Links 0

Links 1 Links 1 P Links 1 Links 1

A B c D
\

I Bucket 0 I Bucket 1 I Bucket 2 I Bucket 3 l

Figure 10.17: Growing a Two-List Hash Table, State (d)

The new four-bucket array is exposed to readers and then a grace-period
operation waits for all readers, resulting in state (c), shown in Figure 10.16.
In this state, all readers are using the new four-bucket array, which means
that the old two-bucket array may now be freed, resulting in state (d), shown
in Figure 10.17.

This design leads to a relatively straightforward implementation, which
is the subject of the next section.

10.4.2 Resizable Hash Table Implementation

Resizing is accomplished by the classic approach of inserting a level of
indirection, in this case, the ht structure shown on lines 11-20 of Listing 10.9
(hash_resize.c). The hashtab structure shown on lines 27-30 contains
only a pointer to the current ht structure along with a spinlock that is
used to serialize concurrent attempts to resize the hash table. If we were
to use a traditional lock- or atomic-operation-based implementation, this
hashtab structure could become a severe bottleneck from both performance
and scalability viewpoints. However, because resize operations should be
relatively infrequent, we should be able to make good use of RCU.

The ht structure represents a specific size of the hash table, as specified
by the ->ht_nbuckets field on line 12. The size is stored in the same
structure containing the array of buckets (->ht_bkt [] on line 19) in order
to avoid mismatches between the size and the array. The ->ht_resize_cur
field on line 13 is equal to —1 unless a resize operation is in progress, in
which case it indicates the index of the bucket whose elements are being

460

Listing 10.9: Resizable Hash-Table Data Structures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

struct ht_elem {

};

struct rcu_head rh;
struct cds_list_head hte_next[2];

struct ht_bucket {

};

struct cds_list_head htb_head;
spinlock_t htb_lock;

struct ht {

};

long ht_nbuckets;

long ht_resize_cur;

struct ht *ht_new;

int ht_idx;

int (*ht_cmp) (struct ht_elem *htep, void *key);
unsigned long (*ht_gethash) (void *key);

void *(*ht_getkey) (struct ht_elem *htep);
struct ht_bucket ht_bkt[0];

struct ht_lock_state {

};

struct ht_bucket *hbp[2];
int hls_idx[2];

struct hashtab {

};

struct ht *ht_cur;
spinlock_t ht_lock;

461

inserted into the new hash table, which is referenced by the ->ht_new field
on line 14. If there is no resize operation in progress, —>ht_new is NULL.
Thus, a resize operation proceeds by allocating a new ht structure and
referencing it via the ->ht _new pointer, then advancing ->ht_resize_cur
through the old table’s buckets. When all the elements have been added to
the new table, the new table is linked into the hashtab structure’s ->ht_cur
field. Once all old readers have completed, the old hash table’s ht structure
may be freed.

The ->ht_idx field on line 15 indicates which of the two sets of list
pointers are being used by this instantiation of the hash table, and is used to
index the ->hte_next [] array in the ht_elem structure on line 3.

The ->ht_cmp(), ->ht_gethash(), and ->ht_getkey () fields on
lines 16—18 collectively define the per-element key and the hash function.
The ->ht_cmp () function compares a specified key with that of the specified
element, the ->ht_gethash () calculates the specified key’s hash, and ->
ht_getkey () extracts the key from the enclosing data element.

The ht_lock_state shown on lines 22-25 is used to communicate lock
state from a new hashtab_lock_mod() to hashtab_add(), hashtab_
del (), and hashtab_unlock_mod (). This state prevents the algorithm
from being redirected to the wrong bucket during concurrent resize opera-
tions.

The ht_bucket structure is the same as before, and the ht_elem
structure differs from that of previous implementations only in providing a
two-element array of list pointer sets in place of the prior single set of list
pointers.

In a fixed-sized hash table, bucket selection is quite straightforward:
Simply transform the hash value to the corresponding bucket index. In
contrast, when resizing, updaters must also determine which of the old and
new sets of buckets to select from. If the bucket that would be selected
from the old table has already been distributed into the new table, then the
bucket should be selected from the new table as well as from the old table.
Conversely, if the bucket that would be selected from the old table has not
yet been distributed, then the bucket should be selected from the old table.

Bucket selection is shown in Listing 10.10, which shows ht_get_
bucket () on lines 1-11 and ht_search_bucket () on lines 13-28. The

462

Listing 10.10: Resizable Hash-Table Bucket Selection

1 static struct ht_bucket *
2 ht_get_bucket(struct ht *htp, void *key,

3 long *b, unsigned long *h)

4 1

5 unsigned long hash = htp->ht_gethash(key);
6

7 *b = hash 7 htp->ht_nbuckets;

8 if (h)

9 *h = hash;

10 return &htp->ht_bkt [*b];

1}

12
13 static struct ht_elem *
14 ht_search_bucket(struct ht *htp, void *key)

15 {

16 long b;

17 struct ht_elem *htep;

18 struct ht_bucket *htbp;

19

20 htbp = ht_get_bucket (htp, key, &b, NULL);

21 cds_list_for_each_entry_rcu(htep,

22 &htbp->htb_head,
23 hte_next [htp->ht_idx]) {
2 if (htp->ht_cmp(htep, key))

25 return htep;

26 ¥

27 return NULL;

28 }

ht_get_bucket () function returns a reference to the bucket correspond-
ing to the specified key in the specified hash table, without making any
allowances for resizing. It also stores the bucket index corresponding to the
key into the location referenced by parameter b on line 7, and the corre-
sponding hash value corresponding to the key into the location referenced
by parameter h (if non-NULL) on line 9. Line 10 then returns a reference to
the corresponding bucket.

The ht_search_bucket () function searches for the specified key
within the specified hash-table version. Line 20 obtains a reference to the
bucket corresponding to the specified key. The loop spanning lines 21-26
searches that bucket, so that if line 24 detects a match, line 25 returns a
pointer to the enclosing data element. Otherwise, if there is no match,
line 27 returns NULL to indicate failure.

463

Listing 10.11: Resizable Hash-Table Update-Side Concurrency Control

1 static void
2 hashtab_lock_mod(struct hashtab *htp_master, void *key,

3 struct ht_lock_state *1lsp)

4 {

5 long b;

6 unsigned long h;

7 struct ht *htp;

8 struct ht_bucket *htbp;

9

10 rcu_read_lock();

11 htp = rcu_dereference (htp_master->ht_cur);
12 htbp = ht_get_bucket (htp, key, &b, &h);
13 spin_lock(&htbp->htb_lock) ;

14 1sp->hbp[0] = htbp;

15 1sp->hls_idx[0] = htp->ht_idx;

16 if (b > READ_ONCE(htp->ht_resize_cur)) {
17 1sp->hbp[1] = NULL;

18 return;

19 ¥

20 htp = rcu_dereference (htp->ht_new);

21 htbp = ht_get_bucket (htp, key, &b, &h);
2 spin_lock(&htbp->htb_lock);

23 1sp->hbp[1] = htbp;

24 1sp->hls_idx[1] = htp->ht_idx;

25 }

27 static void
28 hashtab_unlock_mod(struct ht_lock_state *1sp)

29 {

30 spin_unlock(&1lsp->hbp[0]->htb_lock) ;

31 if (1sp->hbpl1])

32 spin_unlock(&lsp->hbp[1]->htb_lock) ;
33 rcu_read_unlock();

34}

Quick Quiz 10.10: How does the code in Listing 10.10 protect against the
resizing process progressing past the selected bucket? W

This implementation of ht_get_bucket() and ht_search_
bucket () permits lookups and modifications to run concurrently with
a resize operation.

Read-side concurrency control is provided by RCU as was shown in
Listing 10.6, but the update-side concurrency-control functions hashtab_
lock_mod () and hashtab_unlock_mod () must now deal with the possi-
bility of a concurrent resize operation as shown in Listing 10.11.

464

The hashtab_lock_mod() spans lines 1-25 in the listing. Line 10
enters an RCU read-side critical section to prevent the data structures
from being freed during the traversal, line 11 acquires a reference to the
current hash table, and then line 12 obtains a reference to the bucket in this
hash table corresponding to the key. Line 13 acquires that bucket’s lock,
which will prevent any concurrent resizing operation from distributing that
bucket, though of course it will have no effect if that bucket has already
been distributed. Lines 14-15 store the bucket pointer and pointer-set
index into their respective fields in the ht_lock_state structure, which
communicates the information to hashtab_add (), hashtab_del (), and
hashtab_unlock_mod (). Line 16 then checks to see if a concurrent resize
operation has already distributed this bucket across the new hash table, and
if not, line 17 indicates that there is no already-resized hash bucket and
line 18 returns with the selected hash bucket’s lock held (thus preventing a
concurrent resize operation from distributing this bucket) and also within an
RCU read-side critical section. Deadlock is avoided because the old table’s
locks are always acquired before those of the new table, and because the use
of RCU prevents more than two versions from existing at a given time, thus
preventing a deadlock cycle.

Otherwise, a concurrent resize operation has already distributed this
bucket, so line 20 proceeds to the new hash table, line 21 selects the bucket
corresponding to the key, and line 22 acquires the bucket’s lock. Lines 23-24
store the new-table bucket pointer and pointer-set index into their respective
fields in the ht_lock_state structure, which again communicates this
information to hashtab_add (), hashtab_del (), and hashtab_unlock_
mod (). Because this bucket has already been resized and because hashtab_
add () and hashtab_del () affect both the old and the new ht_bucket
structures, two locks are held, one on each of the two buckets. Additionally,
both elements of each array in ht _lock_state structure are used, with the
[0] element pertaining to the old ht_bucket structure and the [1] element
pertaining to the new structure. Once again, hashtab_lock_mod () exits
within an RCU read-side critical section.

The hashtab_unlock_mod () function releases the lock(s) acquired by
hashtab_lock_mod (). Line 30 releases the lock on the old ht_bucket
structure. In the unlikely event that line 31 determines that a resize operation

465

Listing 10.12: Resizable Hash-Table Access Functions

1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master, void *key)

3 {

4 struct ht *htp;

5 struct ht_elem *htep;

6

7 htp = rcu_dereference(htp_master->ht_cur);

3 htep = ht_search_bucket (htp, key);

9 return htep;

0 }

11

12 void hashtab_add(struct ht_elem *htep,

13 struct ht_lock_state *1sp)

14 {

15 struct ht_bucket *htbp = lsp->hbp[0];

16 int i = lsp->hls_idx[0];

17

18 cds_list_add_rcu(&htep->hte_next[i], &htbp->htb_head);
19 if ((htbp = lsp->hbp[1]1)) {

20 cds_list_add_rcu(&htep->hte_next[!i], &htbp->htb_head);
21 ¥

2 }

23

24 void hashtab_del(struct ht_elem *htep,

25 struct ht_lock_state *1sp)

2 {

27 int i = 1lsp->hls_idx[0];

28

29 cds_list_del_rcu(&htep->hte_next[il);

30 if (1sp->hbpl1])

31 cds_list_del_rcu(&htep->hte_next[!i]);
32 }

is in progress, line 32 releases the lock on the new ht_bucket structure.
Either way, line 33 exits the RCU read-side critical section.

Quick Quiz 10.11: Suppose that one thread is inserting an element into the hash
table during a resize operation. What prevents this insertion from being lost due
to a subsequent resize operation completing before the insertion does? H

Now that we have bucket selection and concurrency control in place,
we are ready to search and update our resizable hash table. The hashtab_
lookup (), hashtab_add (), and hashtab_del () functions are shown in
Listing 10.12.

466

The hashtab_lookup() function on lines 1-10 of the listing does
hash lookups. Line 7 fetches the current hash table and line 8 searches the
bucket corresponding to the specified key. Line 9 returns a pointer to the
searched-for element or NULL when the search fails. The caller must be
within an RCU read-side critical section.

Quick Quiz 10.12: The hashtab_lookup () function in Listing 10.12 ignores
concurrent resize operations. Doesn’t this mean that readers might miss an element
that was previously added during a resize operation? H

The hashtab_add () function on lines 12-22 of the listing adds new
data elements to the hash table. Line 15 picks up the current ht_bucket
structure into which the new element is to be added, and line 16 picks up
the index of the pointer pair. Line 18 adds the new element to the current
hash bucket. If line 19 determines that this bucket has been distributed to a
new version of the hash table, then line 20 also adds the new element to the
corresponding new bucket. The caller is required to handle concurrency, for
example, by invoking hashtab_lock_mod () before the call to hashtab_
add () and invoking hashtab_unlock_mod () afterwards.

The hashtab_del () function on lines 24-32 of the listing removes an
existing element from the hash table. Line 27 picks up the index of the
pointer pair and line 29 removes the specified element from the current
table. If line 30 determines that this bucket has been distributed to a new
version of the hash table, then line 31 also removes the specified element
from the corresponding new bucket. As with hashtab_add (), the caller is
responsible for concurrency control and this concurrency control suffices
for synchronizing with a concurrent resize operation.

Quick Quiz 10.13: The hashtab_add() and hashtab_del() functions in
Listing 10.12 can update two hash buckets while a resize operation is progressing.
This might cause poor performance if the frequency of resize operation is not
negligible. Isn’t it possible to reduce the cost of updates in such cases? WM

The actual resizing itself is carried out by hashtab_resize (), shown
in Listing 10.13 on page 467. Line 16 conditionally acquires the top-level
->ht_lock, and if this acquisition fails, line 17 returns ~EBUSY to indicate
that a resize is already in progress. Otherwise, line 18 picks up a reference
to the current hash table, and lines 19-22 allocate a new hash table of the

467

Listing 10.13: Resizable Hash-Table Resizing

int hashtab_resize(struct hashtab *htp_master,

1

2 unsigned long nbuckets,

3 int (*cmp) (struct ht_elem *htep, void *key),

4 unsigned long (*gethash) (void *key),

5 void *(*getkey) (struct ht_elem *htep))

6 {

7 struct ht *htp;

8 struct ht *htp_new;

9 int i;

10 int idx;

11 struct ht_elem *htep;

12 struct ht_bucket *htbp;

13 struct ht_bucket *htbp_new;

14 long b;

15

16 if (!spin_trylock(&htp_master->ht_lock))

17 return -EBUSY;

18 htp = htp_master->ht_cur;

19 htp_new = ht_alloc(nbuckets,

20 cmp ? cmp : htp->ht_cmp,

21 gethash ? gethash : htp->ht_gethash,

2 getkey ? getkey : htp->ht_getkey);

23 if (htp_new == NULL) {

24 spin_unlock(&htp_master->ht_lock) ;

25 return -ENOMEM;

2 }

27 idx = htp->ht_idx;

28 htp_new->ht_idx = !idx;

29 rcu_assign_pointer (htp->ht_new, htp_new);

30 synchronize_rcu();

31 for (i = 0; i < htp->ht_nbuckets; i++) {

32 htbp = &htp->ht_bkt[i];

33 spin_lock (&htbp->htb_lock);

34 cds_list_for_each_entry(htep, &htbp->htb_head, hte_next[idx]) {

35 htbp_new = ht_get_bucket (htp_new, htp_new->ht_getkey(htep),
< &b, NULL);

36 spin_lock(&htbp_new->htb_lock);

37 cds_list_add_rcu(&htep->hte_next [1idx],
< &htbp_new->htb_head) ;

38 spin_unlock(&htbp_new->htb_lock) ;

39 }

40 WRITE_ONCE (htp->ht_resize_cur, i);

41 spin_unlock(&htbp->htb_lock) ;

42 }

43 rcu_assign_pointer (htp_master->ht_cur, htp_new);

44 synchronize_rcu();

45 spin_unlock(&htp_master->ht_lock) ;

16 free(htp) ;

47 return 0;

468

desired size. If a new set of hash/key functions have been specified, these
are used for the new table, otherwise those of the old table are preserved. If
line 23 detects memory-allocation failure, line 24 releases ->ht_lock and
line 25 returns a failure indication.

Line 27 picks up the current table’s index and line 28 stores its inverse to
the new hash table, thus ensuring that the two hash tables avoid overwriting
each other’s linked lists. Line 29 then starts the bucket-distribution process
by installing a reference to the new table into the ->ht_neuw field of the old
table. Line 30 ensures that all readers who are not aware of the new table
complete before the resize operation continues.

Each pass through the loop spanning lines 31-42 distributes the contents
of one of the old hash table’s buckets into the new hash table. Line 32 picks
up a reference to the old table’s current bucket and line 33 acquires that
bucket’s spinlock.

Quick Quiz 10.14: In the hashtab_resize () function in Listing 10.13, what
guarantees that the update to ->ht_new on line 29 will be seen as happening before
the update to ->ht_resize_cur on line 40 from the perspective of hashtab_
add () and hashtab_del () ? In other words, what prevents hashtab_add () and
hashtab_del () from dereferencing a NULL pointer loaded from ->ht_new? H

Each pass through the loop spanning lines 34—39 adds one data element
from the current old-table bucket to the corresponding new-table bucket,
holding the new-table bucket’s lock during the add operation. Line 40
updates ->ht_resize_cur to indicate that this bucket has been distributed.
Finally, line 41 releases the old-table bucket lock.

Execution reaches line 43 once all old-table buckets have been distributed
across the new table. Line 43 installs the newly created table as the current
one, and line 44 waits for all old readers (who might still be referencing the
old table) to complete. Then line 45 releases the resize-serialization lock,
line 46 frees the old hash table, and finally line 47 returns success.

Quick Quiz 10.15: Why is there a WRITE_ONCE () on line 40 in Listing 10.13?
|

469

1x107

T T T T

2 6

38 1x10° B

& p 2ol

= I

$ 100000 ~ E

[oN E o 3

[%2] r /T A 3

Q. B]

2 - » . B

& 10000 - 2,097,152 E
1 000 L Il L L lll L) - lll L -

1 10 100

Number of CPUs (Threads)

Figure 10.18: Overhead of Resizing Hash Tables Between 262,144 and
524,288 Buckets vs. Total Number of Elements

10.4.3 Resizable Hash Table Discussion

Figure 10.18 compares resizing hash tables to their fixed-sized counterparts
for 262,144 and 2,097,152 elements in the hash table. The figure shows
three traces for each element count, one for a fixed-size 262,144-bucket hash
table, another for a fixed-size 524,288-bucket hash table, and a third for a
resizable hash table that shifts back and forth between 262,144 and 524,288
buckets, with a one-millisecond pause between each resize operation.

The uppermost three traces are for the 262,144-element hash table.!
The dashed trace corresponds to the two fixed-size hash tables, and the
solid trace to the resizable hash table. In this case, the short hash chains
cause normal lookup overhead to be so low that the overhead of resizing
dominates over most of the range. In particular, the entire hash table fits
into L3 cache.

! You see only two traces? The dashed one is composed of two traces that differ only
slightly, hence the irregular-looking dash pattern.

470

The lower three traces are for the 2,097,152-element hash table. The
upper dashed trace corresponds to the 262,144-bucket fixed-size hash table,
the solid trace in the middle for low CPU counts and at the bottom for
high CPU counts to the resizable hash table, and the other trace to the
524,288-bucket fixed-size hash table. The fact that there are now an average
of eight elements per bucket can only be expected to produce a sharp
decrease in performance, as in fact is shown in the graph. But worse yet, the
hash-table elements occupy 128 MB, which overflows each socket’s 39 MB
L3 cache, with performance consequences analogous to those described in
Section 3.2.2. The resulting cache overflow means that the memory system
is involved even for a read-only benchmark, and as you can see from the
sublinear portions of the lower three traces, the memory system can be a
serious bottleneck.

Quick Quiz 10.16: How much of the difference in performance between the
large and small hash tables shown in Figure 10.18 was due to long hash chains
and how much was due to memory-system bottlenecks? W

Referring to the last column of Table 3.1, we recall that the first 28 CPUs
are in the first socket, on a one-CPU-per-core basis, which explains the
sharp decrease in performance of the resizable hash table beyond 28 CPUs.
Sharp though this decrease is, please recall that it is due to constant resizing
back and forth. It would clearly be better to resize once to 524,288 buckets,
or, even better, do a single eight-fold resize to 2,097,152 elements, thus
dropping the average number of elements per bucket down to the level
enjoyed by the runs producing the upper three traces.

The key point from this data is that the RCU-protected resizable hash table
performs and scales almost as well as does its fixed-size counterpart. The
performance during an actual resize operation of course suffers somewhat due
to the cache misses causes by the updates to each element’s pointers, and this
effect is most pronounced when the memory system becomes a bottleneck.
This indicates that hash tables should be resized by substantial amounts, and
that hysteresis should be applied to prevent performance degradation due to
too-frequent resize operations. In memory-rich environments, hash-table
sizes should furthermore be increased much more aggressively than they
are decreased.

471

Another key point is that although the hashtab structure is non-
partitionable, it is also read-mostly, which suggests the use of RCU. Given
that the performance and scalability of this resizable hash table is very
nearly that of RCU-protected fixed-sized hash tables, we must conclude that
this approach was quite successful.

Finally, it is important to note that insertions, deletions, and lookups can
proceed concurrently with a resize operation. This concurrency is critically
important when resizing large hash tables, especially for applications that
must meet severe response-time constraints.

Of course, the ht_elem structure’s pair of pointer sets does impose
some memory overhead, which is taken up in the next section.

10.4.4 Other Resizable Hash Tables

One shortcoming of the resizable hash table described earlier in this section
is memory consumption. Each data element has two pairs of linked-list
pointers rather than just one. Is it possible to create an RCU-protected
resizable hash table that makes do with just one pair?

It turns out that the answer is “yes”. Josh Triplett et al. [TMWI11]
produced a relativistic hash table that incrementally splits and combines
corresponding hash chains so that readers always see valid hash chains
at all points during the resizing operation. This incremental splitting and
combining relies on the fact that it is harmless for a reader to see a data
element that should be in some other hash chain: When this happens, the
reader will simply ignore the extraneous data element due to key mismatches.

The process of shrinking a relativistic hash table by a factor of two is
shown in Figure 10.19, in this case shrinking a two-bucket hash table into a
one-bucket hash table, otherwise known as a linear list. This process works
by coalescing pairs of buckets in the old larger hash table into single buckets
in the new smaller hash table. For this process to work correctly, we clearly
need to constrain the hash functions for the two tables. One such constraint
is to use the same underlying hash function for both tables, but to throw out
the low-order bit when shrinking from large to small. For example, the old
two-bucket hash table would use the two top bits of the value, while the
new one-bucket hash table could use the top bit of the value. In this way,

©, © ©

()

Figure 10.19: Shrinking a Relativistic Hash Table

473

a given pair of adjacent even and odd buckets in the old large hash table
can be coalesced into a single bucket in the new small hash table, while still
having a single hash value cover all of the elements in that single bucket.

The initial state is shown at the top of the figure, with time advancing
from top to bottom, starting with initial state (a). The shrinking process
begins by allocating the new smaller array of buckets, and having each
bucket of this new smaller array reference the first element of one of the
buckets of the corresponding pair in the old large hash table, resulting in
state (b).

Then the two hash chains are linked together, resulting in state (c). In
this state, readers looking up an even-numbered element see no change,
and readers looking up elements 1 and 3 likewise see no change. However,
readers looking up some other odd number will also traverse elements O
and 2. This is harmless because any odd number will compare not-equal to
these two elements. There is some performance loss, but on the other hand,
this is exactly the same performance loss that will be experienced once the
new small hash table is fully in place.

Next, the new small hash table is made accessible to readers, resulting
in state (d). Note that older readers might still be traversing the old large
hash table, so in this state both hash tables are in use.

The next step is to wait for all pre-existing readers to complete, resulting
in state (e). In this state, all readers are using the new small hash table, so
that the old large hash table’s buckets may be freed, resulting in the final
state (f).

Growing a relativistic hash table reverses the shrinking process, but
requires more grace-period steps, as shown in Figure 10.20. The initial
state (a) is at the top of this figure, with time advancing from top to bottom.

We start by allocating the new large two-bucket hash table, resulting in
state (b). Note that each of these new buckets references the first element
destined for that bucket. These new buckets are published to readers,
resulting in state (c). After a grace-period operation, all readers are using
the new large hash table, resulting in state (d). In this state, only those
readers traversing the even-values hash bucket traverse element 0, which is
therefore now colored white.

(©)

Figure 10.20: Growing a Relativistic Hash Table

474

475

At this point, the old small hash buckets may be freed, although many
implementations use these old buckets to track progress “unzipping” the
list of items into their respective new buckets. The last even-numbered
element in the first consecutive run of such elements now has its pointer-to-
next updated to reference the following even-numbered element. After a
subsequent grace-period operation, the result is state (e). The vertical arrow
indicates the next element to be unzipped, and element 1 is now colored
black to indicate that only those readers traversing the odd-values hash
bucket may reach it.

Next, the last odd-numbered element in the first consecutive run of such
elements now has its pointer-to-next updated to reference the following
odd-numbered element. After a subsequent grace-period operation, the
result is state (f). A final unzipping operation (including a grace-period
operation) results in the final state (g).

In short, the relativistic hash table reduces the number of per-element list
pointers at the expense of additional grace periods incurred during resizing.
These additional grace periods are usually not a problem because insertions,
deletions, and lookups may proceed concurrently with a resize operation.

However, when a hash table is growing quickly, the large numbers
of grace periods might delay the beginning of the next resize operation.
One way to reduce the number of grace periods is to unzip all the buckets
concurrently, so that the number of grace periods will be limited by the
largest number of elements in a single bucket instead of by the total number
of elements in the hash table. Another approach, also by Josh Triplett,
is to maintain a separate pointer to the element currently being moved
from the old bucket to the new bucket. Readers then check the old bucket,
the separate pointer, and the new bucket in order. This requires read-side
memory ordering, which slows readers, but it greatly reduces the required
number of resize-time grace periods. This approach is used within the Linux
kernel.

It turns out that it is possible to reduce the per-element memory overhead
from a pair of pointers to a single pointer, while still retaining O (1)
deletions. This is accomplished by augmenting split-order list [SS06] with
RCU protection [Des09b, MDJ13c]. The data elements in the hash table are
arranged into a single sorted linked list, with each hash bucket referencing

476

the first element in that bucket. Elements are deleted by setting low-order
bits in their pointer-to-next fields, and these elements are removed from the
list by later traversals that encounter them.

This RCU-protected split-order list is complex, but offers lock-free
progress guarantees for all insertion, deletion, and lookup operations. Such
guarantees can be important in real-time applications. However, one
downside is that the keys must be bit-reversed during lookup, which slows
down readers. But for those for whom this slowdown is not a problem,
an implementation is available from recent versions of the userspace RCU
library [Des09b].

10.5 Other Data Structures

All life is an experiment. The more experiments you
make the better.

RALPH WALDO EMERSON

The preceding sections have focused on data structures that enhance concur-
rency due to partitionability (Section 10.2), efficient handling of read-mostly
access patterns (Section 10.3), or application of read-mostly techniques to
avoid non-partitionability (Section 10.4). This section gives a brief review
of other data structures.

One of the hash table’s greatest advantages for parallel use is that it is
fully partitionable, at least while not being resized. One way of preserving
the partitionability and the size independence is to use a radix tree, which is
also called a trie. Tries partition the search key, using each successive key
partition to traverse the next level of the trie. As such, a trie can be thought
of as a set of nested hash tables, thus providing the required partitionability.
One disadvantage of tries is that a sparse key space can result in inefficient
use of memory. There are a number of compression techniques that may be
used to work around this disadvantage, including hashing the key value to a
smaller keyspace before the traversal [ONO7]. Radix trees are heavily used
in practice, including in the Linux kernel [Pig06].

477

One important special case of both a hash table and a trie is what is
perhaps the oldest of data structures, the array and its multi-dimensional
counterpart, the matrix. The fully partitionable nature of matrices is
exploited heavily in concurrent numerical algorithms.

Self-balancing trees are heavily used in sequential code, with AVL trees
and red-black trees being perhaps the most well-known examples [CLRSO1].
Early attempts to parallelize AVL trees were complex and not necessarily all
that efficient [E1180], however, more recent work on red-black trees provides
better performance and scalability by using RCU for readers and hashed
arrays of locks” to protect reads and updates, respectively [HW 11, HW14].
It turns out that red-black trees rebalance aggressively, which works well
for sequential programs, but not necessarily so well for parallel use. Recent
work has therefore made use of RCU-protected “bonsai trees” that rebalance
less aggressively [CKZ12], trading off optimal tree depth to gain more
efficient concurrent updates.

Concurrent skip lists lend themselves well to RCU readers, and in fact
represents an early academic use of a technique resembling RCU [Pug90].

Concurrent double-ended queues were discussed in Section 6.1.2,
and concurrent stacks and queues have a long history [Tre86], though
not normally the most impressive performance or scalability. They are
nevertheless a common feature of concurrent libraries [MDJ13d]. Re-
searchers have recently proposed relaxing the ordering constraints of
stacks and queues [Shall], with some work indicating that relaxed-
ordered queues actually have better ordering properties than do strict
FIFO queues [HKLP12, KLP12, HHK*13].

It seems likely that continued work with concurrent data structures will
produce novel algorithms with surprising properties.

2 In the guise of swissTM [DFGG11], which is a variant of software transactional memory
in which the developer flags non-shared accesses.

478

10.6 Summary

There’s only one thing more painful than learning
from experience, and that is not learning from
experience.

ARCHIBALD MACLEISH

This chapter has focused primarily on hash tables, including resizable hash
tables, which are not fully partitionable. Section 10.5 gave a quick overview
of a few non-hash-table data structures. Nevertheless, this exposition of
hash tables is an excellent introduction to the many issues surrounding
high-performance scalable data access, including:

1.

Fully partitioned data structures work well on small systems, for
example, single-socket systems.

Larger systems require locality of reference as well as full partitioning.

Read-mostly techniques, such as hazard pointers and RCU, provide
good locality of reference for read-mostly workloads, and thus provide
excellent performance and scalability even on larger systems.

Read-mostly techniques also work well on some types of non-
partitionable data structures, such as resizable hash tables.

. Large data structures can overflow CPU caches, reducing performance

and scalability.

Additional performance and scalability can be obtained by specializing
the data structure to a specific workload, for example, by replacing a
general key with a 32-bit integer.

Although requirements for portability and for extreme performance
often conflict, there are some data-structure-layout techniques that
can strike a good balance between these two sets of requirements.

That said, performance and scalability are of little use without reliability,
so the next chapter covers validation.

479

Chapter 11
Validation

If it is not tested, it doesn’t work.

UNKNOWN

I have had a few parallel programs work the first time, but that is only
because I have written an extremely large number parallel programs over
the past few decades. And I have had far more parallel programs that fooled
me into thinking that they were working correctly the first time than actually
were working the first time.

I thus need to validate my parallel programs. The basic trick behind
validation, is to realize that the computer knows what is wrong. It is
therefore your job to force it to tell you. This chapter can therefore be
thought of as a short course in machine interrogation. But you can leave
the good-cop/bad-cop routine at home. This chapter covers much more
sophisticated and effective methods, especially given that most computers
couldn’t tell a good cop from a bad cop, at least as far as we know.

A longer course may be found in many recent books on validation,
as well as at least one older but valuable one [Mye79]. Validation is an
extremely important topic that cuts across all forms of software, and is
worth intensive study in its own right. However, this book is primarily about
concurrency, so this chapter will do little more than scratch the surface of
this critically important topic.

Section 11.1 introduces the philosophy of debugging. Section 11.2
discusses tracing, Section 11.3 discusses assertions, and Section 11.4
discusses static analysis. Section 11.5 describes some unconventional
approaches to code review that can be helpful when the fabled 10,000 eyes
happen not to be looking at your code. Section 11.6 overviews the use
of probability for validating parallel software. Because performance and
scalability are first-class requirements for parallel programming, Section 11.7

480

covers these topics. Finally, Section 11.8 gives a fanciful summary and a
short list of statistical traps to avoid.

But never forget that the three best debugging tools are a thorough
understanding of the requirements, a solid design, and a good night’s sleep!

11.1 Introduction

Debugging is like being the detective in a crime
movie where you are also the murderer.

FiLiPE FORTES

Section 11.1.1 discusses the sources of bugs, and Section 11.1.2 overviews
the mindset required when validating software. Section 11.1.3 discusses
when you should start validation, and Section 11.1.4 describes the sur-
prisingly effective open-source regimen of code review and community
testing.

11.1.1 Where Do Bugs Come From?

Bugs come from developers. The basic problem is that the human brain
did not evolve with computer software in mind. Instead, the human brain
evolved in concert with other human brains and with animal brains. Because
of this history, the following three characteristics of computers often come
as a shock to human intuition:

1. Computers lack common sense, despite huge sacrifices at the altar of
artificial intelligence.

2. Computers fail to understand user intent, or more formally, computers
generally lack a theory of mind.

3. Computers cannot do anything useful with a fragmentary plan, instead
requiring that every detail of all possible scenarios be spelled out in
full.

481

The first two points should be uncontroversial, as they are illustrated by
any number of failed products, perhaps most famously Clippy and Microsoft
Bob. By attempting to relate to users as people, these two products raised
common-sense and theory-of-mind expectations that they proved incapable
of meeting. Perhaps the set of software assistants are now available on
smartphones will fare better, but as of 2021 reviews are mixed. That said,
the developers working on them by all accounts still develop the old way:
The assistants might well benefit end users, but not so much their own
developers.

This human love of fragmentary plans deserves more explanation,
especially given that it s a classic two-edged sword. This love of fragmentary
plans is apparently due to the assumption that the person carrying out the
plan will have (1) common sense and (2) a good understanding of the intent
and requirements driving the plan. This latter assumption is especially likely
to hold in the common case where the person doing the planning and the
person carrying out the plan are one and the same: In this case, the plan
will be revised almost subconsciously as obstacles arise, especially when
that person has the a good understanding of the problem at hand. In fact,
the love of fragmentary plans has served human beings well, in part because
it is better to take random actions that have a some chance of locating food
than to starve to death while attempting to plan the unplannable. However,
the usefulness of fragmentary plans in the everyday life of which we are
all experts is no guarantee of their future usefulness in stored-program
computers.

Furthermore, the need to follow fragmentary plans has had important
effects on the human psyche, due to the fact that throughout much of
human history, life was often difficult and dangerous. It should come as no
surprise that executing a fragmentary plan that has a high probability of a
violent encounter with sharp teeth and claws requires almost insane levels of
optimism—a level of optimism that actually is present in most human beings.
These insane levels of optimism extend to self-assessments of programming
ability, as evidenced by the effectiveness of (and the controversy over)
code-interviewing techniques [BraO7]. In fact, the clinical term for a human
being with less-than-insane levels of optimism is “clinically depressed”.
Such people usually have extreme difficulty functioning in their daily lives,

482

underscoring the perhaps counter-intuitive importance of insane levels of
optimism to a normal, healthy life. Furtheremore, if you are not insanely
optimistic, you are less likely to start a difficult but worthwhile project.'

Quick Quiz 11.1: When in computing is it necessary to follow a fragmentary
plan? H

An important special case is the project that, while valuable, is not
valuable enough to justify the time required to implement it. This special
case is quite common, and one early symptom is the unwillingness of the
decision-makers to invest enough to actually implement the project. A
natural reaction is for the developers to produce an unrealistically optimistic
estimate in order to be permitted to start the project. If the organization is
strong enough and its decision-makers ineffective enough, the project might
succeed despite the resulting schedule slips and budget overruns. However,
if the organization is not strong enough and if the decision-makers fail to
cancel the project as soon as it becomes clear that the estimates are garbage,
then the project might well kill the organization. This might result in another
organization picking up the project and either completing it, canceling
it, or being killed by it. A given project might well succeed only after
killing several organizations. One can only hope that the organization that
eventually makes a success of a serial-organization-killer project maintains
a suitable level of humility, lest it be killed by its next such project.

Quick Quiz 11.2: Who cares about the organization? After all, it is the project
that is important! H

Important though insane levels of optimism might be, they are a key
source of bugs (and perhaps failure of organizations). The question is
therefore “How to maintain the optimism required to start a large project
while at the same time injecting enough reality to keep the bugs down to a
dull roar?” The next section examines this conundrum.

! There are some famous exceptions to this rule of thumb. Some people take on difficult
or risky projects in order to at least a temporarily escape from their depression. Others have
nothing to lose: The project is literally a matter of life or death.

483
11.1.2 Required Mindset

When carrying out any validation effort, keep the following definitions
firmly in mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any reliable non-trivial
program contains at least one bug that you do not know about. Therefore,
any validation effort undertaken on a non-trivial program that fails to find
any bugs is itself a failure. Validation is therefore an exercise in destruction.
This means that if you are the type of person who enjoys breaking things,
validation is just job for you.

Quick Quiz 11.3: Suppose that you are writing a script that processes the output
of the time command, which looks as follows:

real Om0.132s
user Om0.040s
sys Om0.008s

The script is required to check its input for errors, and to give appropriate diagnostics
if fed erroneous time output. What test inputs should you provide to this program
to test it for use with time output generated by single-threaded programs? H

But perhaps you are a super-programmer whose code is always perfect
the first time every time. If so, congratulations! Feel free to skip this chapter,
but I do hope that you will forgive my skepticism. You see, I have too
many people who claimed to be able to write perfect code the first time,
which is not too surprising given the previous discussion of optimism and
over-confidence. And even if you really are a super-programmer, you just
might find yourself debugging lesser mortals’ work.

One approach for the rest of us is to alternate between our normal state
of insane optimism (Sure, I can program that!) and severe pessimism (It
seems to work, but I just know that there have to be more bugs hiding in
there somewhere!). It helps if you enjoy breaking things. If you don’t, or if
your joy in breaking things is limited to breaking other people’s things, find

484

someone who does love breaking your code and have them help you break
1t.

Another helpful frame of mind is to hate it when other people find bugs
in your code. This hatred can help motivate you to torture your code beyond
all reason in order to increase the probability that you will be the one to find
the bugs. Just make sure to suspend this hatred long enough to sincerely
thank anyone who does find a bug in your code! After all, by so doing, they
saved you the trouble of tracking it down, and possibly at great personal
expense dredging through your code.

Yet another helpful frame of mind is studied skepticism. You see,
believing that you understand the code means you can learn absolutely
nothing about it. Ah, but you know that you completely understand the
code because you wrote or reviewed it? Sorry, but the presence of bugs
suggests that your understanding is at least partially fallacious. One cure is
to write down what you know to be true and double-check this knowledge,
as discussed in Sections 11.2-11.5. Objective reality always overrides
whatever you might think you know.

One final frame of mind is to consider the possibility that someone’s
life depends on your code being correct. One way of looking at this is that
consistently making good things happen requires a lot of focus on a lot of
bad things that might happen, with an eye towards preventing or otherwise
handling those bad things.”> The prospect of these bad things might also
motivate you to torture your code into revealing the whereabouts of its bugs.

This wide variety of frames of mind opens the door to the possibility of
multiple people with different frames of mind contributing to the project,
with varying levels of optimism. This can work well, if properly organized.

Some people might see vigorous validation as a form of torture, as
depicted in Figure 11.1.3 Such people might do well to remind themselves
that, Tux cartoons aside, they are really torturing an inanimate object, as
shown in Figure 11.2. Rest assured that those who fail to torture their code
are doomed to be tortured by it!

2 For more on this philosophy, see the chapter entitled “The Power of Negative Thinking”
from Chris Hadfield’s excellent book entitled “An Astronaut’s Guide to Life on Earth.”

3 The cynics among us might question whether these people are afraid that validation will
find bugs that they will then be required to fix.

485

Figure 11.2: Rationalizing Validation

v2025.12.18a

486

However, this leaves open the question of exactly when during the project
lifetime validation should start, a topic taken up by the next section.

11.1.3 When Should Validation Start?

Validation should start exactly when the project starts.

To see this, consider that tracking down a bug is much harder in a large
program than in a small one. Therefore, to minimize the time and effort
required to track down bugs, you should test small units of code. Although
you won’t find all the bugs this way, you will find a substantial fraction, and
it will be much easier to find and fix the ones you do find. Testing at this
level can also alert you to larger flaws in your overall design, minimizing
the time you waste writing code that is broken by design.

But why wait until you have code before validating your design?*
Hopefully reading Chapters 3 and 4 provided you with the information
required to avoid some regrettably common design flaws, but discussing
your design with a colleague or even simply writing it down can help flush
out additional flaws.

However, it is all too often the case that waiting to start validation
until you have a design is waiting too long. Mightn’t your natural level of
optimism caused you to start the design before you fully understood the
requirements? The answer to this question will almost always be “yes”.
One good way to avoid flawed requirements is to get to know your users. To
really serve them well, you will have to live among them.

Quick Quiz 11.4: You are asking me to do all this validation BS before I even
start coding??? That sounds like a great way to never get started!!! [l

First-of-a-kind projects often use different methodologies such as rapid
prototyping or agile. Here, the main goal of early prototypes are not to
create correct implementations, but rather to learn the project’s requirements.
But this does not mean that you omit validation; it instead means that you
approach it differently.

One such approach takes a Darwinian view, with the validation suite
eliminating code that is not fit to solve the problem at hand. From this

4 The old saying “First we must code, then we have incentive to think” notwithstanding.

487

viewpoint, a vigorous validation suite is essential to the fitness of your
software. However, taking this approach to its logical conclusion is quite
humbling, as it requires us developers to admit that our carefully crafted
changes to the codebase are, from a Darwinian standpoint, random mutations.
On the other hand, this conclusion is supported by long experience indicating
that seven percent of fixes introduce at least one bug [BJ12].

How vigorous should your validation suite be? If the bugs it finds aren’t
threatening the very foundations of your software design, then it is not yet
vigorous enough. After all, your design is just as prone to bugs as is your
code, and the earlier you find and fix the bugs in your design, the less time
you will waste coding those design bugs.

Quick Quiz 11.5: Are you actually suggesting that it is possible to test correctness
into software??? Everyone knows that is impossible!!! H

It is worth reiterating that this advice applies to first-of-a-kind projects.
If you are instead doing a project in a well-explored area, you would be quite
foolish to refuse to learn from previous experience. But you should still
start validating right at the beginning of the project, but hopefully guided
by others’ hard-won knowledge of both requirements and pitfalls.

An equally important question is “When should validation stop?” The
best answer is “Some time after the last change.” Every change has
the potential to create a bug, and thus every change must be validated.
Furthermore, validation development should continue through the full
lifetime of the project. After all, the Darwinian perspective above implies that
bugs are adapting to your validation suite. Therefore, unless you continually
improve your validation suite, your project will naturally accumulate hordes
of validation-suite-immune bugs.

But life is a tradeoff, and every bit of time invested in validation suites
as a bit of time that cannot be invested in directly improving the project
itself. These sorts of choices are never easy, and it can be just as damaging
to overinvest in validation as it can be to underinvest. But this is just one
more indication that life is not easy.

Now that we have established that you should start validation when you
start the project (if not earlier!), and that both validation and validation
development should continue throughout the lifetime of that project, the

488

following sections cover a number of validation techniques and methods
that have proven their worth.

11.1.4 The Open Source Way

The open-source programming methodology has proven quite effective, and
includes a regimen of intense code review and testing.

I can personally attest to the effectiveness of the open-source commu-
nity’s intense code review. One of my first patches to the Linux kernel
involved a distributed filesystem where one node might write to a given file
that another node has mapped into memory. In this case, it is necessary
to invalidate the affected pages from the mapping in order to allow the
filesystem to maintain coherence during the write operation. I coded up a
first attempt at a patch, and, in keeping with the open-source maxim “post
early, post often”, I posted the patch. I then considered how I was going to
test it.

But before I could even decide on an overall test strategy, I got a reply
to my posting pointing out a few bugs. I fixed the bugs and reposted the
patch, and returned to thinking out my test strategy. However, before I had
a chance to write any test code, I received a reply to my reposted patch,
pointing out more bugs. This process repeated itself many times, and I am
not sure that I ever got a chance to actually test the patch.

This experience brought home the truth of the open-source saying:
Given enough eyeballs, all bugs are shallow [Ray99].

However, when you post some code or a given patch, it is worth asking
a few questions:

1. How many of those eyeballs are actually going to look at your code?

2. How many will be experienced and clever enough to actually find
your bugs?

3. Exactly when are they going to look?

I was lucky: There was someone out there who wanted the functionality
provided by my patch, who had long experience with distributed filesystems,
and who looked at my patch almost immediately. If no one had looked at

489

my patch, there would have been no review, and therefore none of those
bugs would have been located. If the people looking at my patch had lacked
experience with distributed filesystems, it is unlikely that they would have
found all the bugs. Had they waited months or even years to look, I likely
would have forgotten how the patch was supposed to work, making it much
more difficult to fix them.

However, we must not forget the second tenet of the open-source
development, namely intensive testing. For example, a great many people
test the Linux kernel. Some test patches as they are submitted, perhaps even
yours. Others test the -next tree, which is helpful, but there is likely to be
several weeks or even months delay between the time that you write the
patch and the time that it appears in the -next tree, by which time the patch
will not be quite as fresh in your mind. Still others test maintainer trees,
which often have a similar time delay.

Quite a few people don’t test code until it is committed to mainline, or
the master source tree (Linus’s tree in the case of the Linux kernel). If your
maintainer won’t accept your patch until it has been tested, this presents you
with a deadlock situation: Your patch won’t be accepted until it is tested,
but it won’t be tested until it is accepted. Nevertheless, people who test
mainline code are still relatively aggressive, given that many people and
organizations do not test code until it has been pulled into a Linux distro.

And even if someone does test your patch, there is no guarantee that
they will be running the hardware and software configuration and workload
required to locate your bugs.

Therefore, even when writing code for an open-source project, you need
to be prepared to develop and run your own test suite. Test development is
an underappreciated and very valuable skill, so be sure to take full advantage
of any existing test suites available to you. Important as test development is,
we must leave further discussion of it to books dedicated to that topic. The
following sections therefore discuss locating bugs in your code given that
you already have a good test suite.

490

11.2 Tracing

The machine knows what is wrong. Make it tell you.

UNKNOWN

When all else fails, add a printk()! Or a printf (), if you are working
with user-mode C-language applications.

The rationale is simple: If you cannot figure out how execution reached a
given point in the code, sprinkle print statements earlier in the code to work
out what happened. You can get a similar effect, and with more convenience
and flexibility, by using a debugger such as gdb (for user applications) or
kgdb (for debugging Linux kernels). Much more sophisticated tools exist,
with some of the more recent offering the ability to rewind backwards in
time from the point of failure.

These brute-force testing tools are all valuable, especially now that
typical systems have more than 64K of memory and CPUs running faster
than 4 MHz. Much has been written about these tools, so this chapter will
add only a little more.

However, these tools all have a serious shortcoming when you need a
fastpath to tell you what is going wrong, namely, these tools often have
excessive overheads. There are special tracing technologies for this purpose,
which typically leverage data ownership techniques (see Chapter 8) to
minimize the overhead of runtime data collection. One example within the
Linux kernel is “trace events” [Ros10b, Ros10c, Ros10d, Ros10a], which
uses per-CPU buffers to allow data to be collected with extremely low
overhead. Even so, enabling tracing can sometimes change timing enough
to hide bugs, resulting in heisenbugs, which are discussed in Section 11.6
and especially Section 11.6.4. In the kernel, BPF can do data reduction in
the kernel, reducing the overhead of transmitting the needed information
from the kernel to userspace [Grel9]. In userspace code, there is a huge
number of tools that can help you. One good starting point is Brendan
Gregg’s blog.’

5 http://www.brendangregg.com/blog/

http://www.brendangregg.com/blog/

491

Even if you avoid heisenbugs, other pitfalls await you. For example,
although the machine really does know all, what it knows is almost always
way more than your head can hold. For this reason, high-quality test
suites normally come with sophisticated scripts to analyze the voluminous
output. But beware—scripts will only notice what you tell them to. My
rcutorture scripts are a case in point: Early versions of those scripts
were quite satisfied with a test run in which RCU grace periods stalled
indefinitely. This of course resulted in the scripts being modified to detect
RCU grace-period stalls, but this does not change the fact that the scripts
will only detect problems that I make them detect. But note well that unless
you have a solid design, you won’t know what your script should check for!

Another problem with tracing and especially with printk() calls is
that their overhead can rule out production use. In such cases, assertions
can be helpful.

11.3 Assertions

No man really becomes a fool until he stops asking
questions.

CHARLES P. STEINMETZ

Assertions are usually implemented in the following manner:

if (something_bad_is_happening())
2 complain() ;

This pattern is often encapsulated into C-preprocessor macros or lan-
guage intrinsics, for example, in the Linux kernel, this might be rep-
resented as WARN_ON (something_bad_is_happening()). Of course,
if something_bad_is_happening() quite frequently, the resulting out-
put might obscure reports of other problems, in which case WARN_ON_
ONCE (something_bad_is_happening()) might be more appropriate.

[Quick Quiz 11.6: How can you implement WARN_ON_ONCE()? M]

492

In parallel code, one bad something that might happen is that a function
expecting to be called under a particular lock might be called without that
lock being held. Such functions sometimes have header comments stating
something like “The caller must hold foo_lock when calling this function”,
but such a comment does no good unless someone actually reads it. An
executable statement carries far more weight. The Linux kernel’s lockdep
facility [Cor0O6a, Ros11] therefore provides a lockdep_assert_held()
function that checks whether the specified lock is held. Of course, lockdep
incurs significant overhead, and thus might not be helpful in production.

An especially bad parallel-code something is unexpected concurrent
access to data. The kernel concurrency sanitizer (KCSAN) [Cor19] uses
existing markings such as READ_ONCE() and WRITE_ONCE() to deter-
mine which concurrent accesses deserve warning messages. KCSAN
has a significant false-positive rate, especially from the viewpoint of de-
velopers thinking in terms of C as assembly language with additional
syntax. KCSAN therefore provides a data_race() construct to forgive
known-benign data races, and also the ASSERT_EXCLUSIVE_ACCESS ()
and ASSERT_EXCLUSIVE_WRITER() assertions to explicitly check for data
races [EMV*20a, EMV*20Db].

So what can be done in cases where checking is necessary, but where
the overhead of runtime checking cannot be tolerated? One approach is
static analysis, which is discussed in the next section.

11.4 Static Analysis

A lot of automation isn’t a replacement of humans
but of mind-numbing behavior.

SUMMARIZED FROM STEWART BUTTERFIELD

Static analysis is a validation technique where one program takes a second
program as input, reporting errors and vulnerabilities located in this second
program. Interestingly enough, almost all programs are statically analyzed
by their compilers or interpreters. These tools are far from perfect, but their
ability to locate errors has improved immensely over the past few decades,

493

in part because they now have much more than 64K bytes of memory in
which to carry out their analyses.

The original UNIX 1int tool [Joh77] was quite useful, though much of
its functionality has since been incorporated into C compilers. There are nev-
ertheless lint-like tools in use to this day. The sparse static analyzer [Cor04b]
finds higher-level issues in the Linux kernel, including:

1. Misuse of pointers to user-space structures.

2. Assignments from too-long constants.

3. Empty switch statements.

4. Mismatched lock acquisition and release primitives.

5. Misuse of per-CPU primitives.

6. Use of RCU primitives on non-RCU pointers and vice versa.

There is a coccinelle tool that can be thought of as a C-syntax-aware
search-and-replace facility. There is also a large body of scripts that use
this tool to locate and fix some classes of Linux-kernel bugs [PTS*11].

Although it is likely that compilers will continue to increase their static-
analysis capabilities, coccinelle and the sparse static analyzer demonstrate
the benefits of static analysis outside of the compiler, particularly for finding
application-specific bugs. Sections 12.4—12.5 describe more sophisticated
forms of static analysis.

11.5 Code Review

If a man speaks of my virtues, he steals from me; if
he speaks of my vices, then he is my teacher.

CHINESE PROVERB

Code review is a special case of static analysis with human beings doing
the analysis. Human beings are of course subject to inattention, fatigue,

494

and errors, which underscores the importance of static analysis and testing.
Done properly, these two activities can automate at least some aspects of
code review. However, it does not appear that testing and static analysis will
be able to completely replace manual review any time soon. This section
therefore covers inspection, walkthroughs, and self-inspection.

11.5.1 Inspection

Traditionally, formal code inspections take place in face-to-face meetings
with formally defined roles: Moderator, developer, and one or two other
participants. The developer reads through the code, explaining what it is
doing and why it works. The one or two other participants ask questions
and raise issues, hopefully exposing the author’s invalid assumptions, while
the moderator’s job is to resolve any resulting conflicts and take notes. This
process can be extremely effective at locating bugs, particularly if all of the
participants are familiar with the code at hand.

However, this face-to-face formal procedure does not necessarily work
well in the global Linux kernel community. Instead, individuals review
code separately and provide comments via email or IRC. The note-taking
is provided by email archives or IRC logs, and moderators volunteer their
services as required by the occasional flamewar. This process also works
reasonably well, particularly if all of the participants are familiar with
the code at hand. In fact, one advantage of the Linux kernel community
approach over traditional formal inspections is the greater probability of
contributions from people not familiar with the code, who might not be
blinded by the author’s invalid assumptions, and who might also test the
code.

Quick Quiz 11.7: Just what invalid assumptions are you accusing Linux kernel
hackers of harboring??? W

It is quite likely that the Linux kernel community’s review process is
ripe for improvement:

1. There is sometimes a shortage of people with the time and expertise
required to carry out an effective review.

495

2. Even though all review discussions are archived, they are often “lost”
in the sense that insights are forgotten and people fail to look up the
discussions. This can result in re-insertion of the same old bugs.

3. It is sometimes difficult to resolve flamewars when they do break out,
especially when the combatants have disjoint goals, experience, and
vocabulary.

Perhaps some of the needed improvements will be provided by
continuous-integration-style testing, but there are many bugs more eas-
ily found by review than by testing. When reviewing, therefore, it is
worthwhile to look at relevant documentation in commit logs, bug reports,
and LWN articles. This documentation can help you quickly build up the
required expertise.

11.5.2 Walkthroughs

A traditional code walkthrough is similar to a formal inspection, except
that the group “plays computer” with the code, driven by specific test cases.
A typical walkthrough team has a moderator, a secretary (who records
bugs found), a testing expert (who generates the test cases) and perhaps
one to two others. These can be extremely effective, albeit also extremely
time-consuming.

It has been some decades since I have participated in a formal walk-
through, and I suspect that a present-day walkthrough would use single-
stepping debuggers. One could imagine a particularly sadistic procedure as
follows:

1. The tester presents the test case.

2. The moderator starts the code under a debugger, using the specified
test case as input.

3. Before each statement is executed, the developer is required to predict
the outcome of the statement and explain why this outcome is correct.

4. If the outcome differs from that predicted by the developer, this is
taken as a potential bug.

496

5. In parallel code, a “concurrency shark” asks what code might execute
concurrently with this code, and why such concurrency is harmless.

Sadistic, certainly. Effective? Maybe. If the participants have a
good understanding of the requirements, software tools, data structures,
and algorithms, then walkthroughs can be extremely effective. If not,
walkthroughs are often a waste of time.

11.5.3 Self-Inspection

Although developers are usually not all that effective at inspecting their
own code, there are a number of situations where there is no reasonable
alternative. For example, the developer might be the only person authorized
to look at the code, other qualified developers might all be too busy, or the
code in question might be sufficiently bizarre that the developer is unable
to convince anyone else to take it seriously until after demonstrating a
prototype. In these cases, the following procedure can be quite helpful,
especially for complex parallel code:

1. Write design document with requirements, diagrams for data struc-
tures, and rationale for design choices.

2. Consult with experts, updating the design document as needed.

3. Write the code in pen on paper, correcting errors as you go. Resist
the temptation to refer to pre-existing nearly identical code sequences,
instead, copy them.

4. At each step, articulate and question your assumptions, inserting
assertions or constructing tests to check them.

5. If there were errors, copy the code in pen on fresh paper, correcting
errors as you go. Repeat until the last two copies are identical.

6. Produce proofs of correctness for any non-obvious code.
7. Use a source-code control system. Commit early; commit often.

8. Test the code fragments from the bottom up.

497

9. When all the code is integrated (but preferably before), do full-up
functional and stress testing.

10. Once the code passes all tests, write code-level documentation,
perhaps as an extension to the design document discussed above. Fix
both the code and the test code as needed.

When I follow this procedure for new RCU code, there are normally
only a few bugs left at the end. With a few prominent (and embarrassing)
exceptions [McK11a], I usually manage to locate these bugs before others
do. That said, this is getting more difficult over time as the number and
variety of Linux-kernel users increases.

Quick Quiz 11.8: Why would anyone bother copying existing code in pen on
paper??? Doesn’t that just increase the probability of transcription errors? H

Quick Quiz 11.9: This procedure is ridiculously over-engineered! How can you
expect to get a reasonable amount of software written doing it this way??? H

Quick Quiz 11.10: What do you do if, after all the pen-on-paper copying, you
find a bug while typing in the resulting code? H

The above procedure works well for new code, but what if you need to
inspect code that you have already written? You can of course apply the
above procedure for old code in the special case where you wrote one to
throw away [FPB79], but the following approach can also be helpful in less
desperate circumstances:

1. Using your favorite documentation tool (IXIEX, HTML, OpenOffice,
or straight ASCII), describe the high-level design of the code in
question. Use lots of diagrams to illustrate the data structures and
how these structures are updated.

2. Make a copy of the code, stripping away all comments.
3. Document what the code does statement by statement.

4. Fix bugs as you find them.

498

This works because describing the code in detail is an excellent way to
spot bugs [Mye79]. This second procedure is also a good way to get your
head around someone else’s code, although the first step often suffices.

Although review and inspection by others is probably more efficient
and effective, the above procedures can be quite helpful in cases where for
whatever reason it is not feasible to involve others.

At this point, you might be wondering how to write parallel code without
having to do all this boring paperwork. Here are some time-tested ways of
accomplishing this:

1. Write a sequential program that scales through use of available parallel
library functions.

2. Write sequential plug-ins for a parallel framework, such as map-reduce,
BOINC, or a web-application server.

3. Fully partition your problems, then implement sequential program(s)
that run in parallel without communication.

4. Stick to one of the application areas (such as linear algebra) where
tools can automatically decompose and parallelize the problem.

5. Make extremely disciplined use of parallel-programming primitives,
so that the resulting code is easily seen to be correct. But beware: It
is always tempting to break the rules “just a little bit” to gain better
performance or scalability. Breaking the rules often results in general
breakage. That is, unless you carefully do the paperwork described
in this section.

But the sad fact is that even if you do the paperwork or use one of the
above ways to more-or-less safely avoid paperwork, there will be bugs. If
nothing else, more users and a greater variety of users will expose more
bugs more quickly, especially if those users are doing things that the original
developers did not consider. The next section describes how to handle the
probabilistic bugs that occur all too commonly when validating parallel
software.

499

Quick Quiz 11.11: Wait! Why on earth would an abstract piece of software fail
only sometimes??? H

11.6 Probability and Heisenbugs

With both heisenbugs and impressionist art, the
closer you get, the less you see.

UNKNOWN

So your parallel program fails sometimes. But you used techniques from
the earlier sections to locate the problem and now have a fix in place!
Congratulations!!!

Now the question is just how much testing is required in order to be
certain that you actually fixed the bug, as opposed to just reducing the
probability of it occurring on the one hand, having fixed only one of several
related bugs on the other hand, or made some ineffectual unrelated change
on yet a third hand. In short, what is the answer to the eternal question
posed by Figure 11.3?

Unfortunately, the honest answer is that an infinite amount of testing is
required to attain absolute certainty.

Quick Quiz 11.12: Suppose that you had a very large number of systems at your
disposal. For example, at current cloud prices, you can purchase a huge amount of
CPU time at low cost. Why not use this approach to get close enough to certainty
for all practical purposes? W

But suppose that we are willing to give up absolute certainty in favor of
high probability. Then we can bring powerful statistical tools to bear on this
problem. However, this section will focus on simple statistical tools. These
tools are extremely helpful, but please note that reading this section is not a
substitute for statistics classes.®

6 Which I most highly recommend. The few statistics courses I have taken have provided
value far beyond that of the time I spent on them.

500

Hooray! | passed
the stress test!

Ha. You just got lucky

Figure 11.3: Passed on Merits? Or Dumb Luck?

For our start with simple statistical tools, we need to decide whether
we are doing discrete or continuous testing. Discrete testing features well-
defined individual test runs. For example, a boot-up test of a Linux kernel
patch is an example of a discrete test: The kernel either comes up or it
does not. Although you might spend an hour boot-testing your kernel, the
number of times you attempted to boot the kernel and the number of times
the boot-up succeeded would often be of more interest than the length of
time you spent testing. Functional tests tend to be discrete.

On the other hand, if my patch involved RCU, I would probably run
rcutorture, which is a kernel module that, strangely enough, tests RCU.
Unlike booting the kernel, where the appearance of a login prompt signals
the successful end of a discrete test, rcutorture will happily continue
torturing RCU until either the kernel crashes or until you tell it to stop. The
duration of the rcutorture test is usually of more interest than the number
of times you started and stopped it. Therefore, rcutorture is an example
of a continuous test, a category that includes many stress tests.

501

Statistics for discrete tests are simpler and more familiar than those for
continuous tests, and furthermore the statistics for discrete tests can often be
pressed into service for continuous tests, though with some loss of accuracy.
We therefore start with discrete tests.

11.6.1 Statistics for Discrete Testing

Suppose a bug has a 10 % chance of occurring in a given run and that we do
five runs. How do we compute the probability of at least one run failing?
Here is one way:

1. Compute the probability of a given run succeeding, which is 90 %.

2. Compute the probability of all five runs succeeding, which is 0.9
raised to the fifth power, or about 59 %.

3. Because either all five runs succeed, or at least one fails, subtract the
59 % expected success rate from 100 %, yielding a 41 % expected
failure rate.

For those preferring formulas, call the probability of a single failure f.
The probability of a single success is then 1 — f and the probability that all
of n tests will succeed is S;,:

Sp=(1-" (1L.1)
The probability of failure is 1 — S, or:

Fo=1-(1-f)" (11.2)

Quick Quiz 11.13: Say what??? When I plug the earlier five-test 10 %-failure-rate
example into the formula, I get 59,050 % and that just doesn’t make sense!!! W

So suppose that a given test has been failing 10 % of the time. How
many times do you have to run the test to be 99 % sure that your alleged fix
actually helped?

Another way to ask this question is “How many times would we need to
run the test to cause the probability of failure to rise above 99 %7 After

502

all, if we were to run the test enough times that the probability of seeing at
least one failure becomes 99 %, and none of these test runs fail, there is only
1 % probability of this “success” being due to dumb luck. And if we plug
f =0.11into Eq. 11.2 and vary n, we find that 43 runs gives us a 98.92 %
chance of at least one test failing given the original 10 % per-test failure
rate, while 44 runs gives us a 99.03 % chance of at least one test failing. So
if we run the test on our fix 44 times and see no failures, there is a 99 %
probability that our fix really did help.

But repeatedly plugging numbers into Eq. 11.2 can get tedious, so let’s
solve for n:

F,=1-(1-f)" (11.3)
1-F,=(1-/)" (11.4)
log(1-F,)=nlog(l-f) (11.5)

Finally the number of tests required is given by:

_ 10g (1 - F n)
log (1 - f)
Plugging f = 0.1 and F,, = 0.99 into Eq. 11.6 gives 43.7, meaning that
we need 44 consecutive successful test runs to be 99 % certain that our fix
was a real improvement. This matches the number obtained by the previous
method, which is reassuring.

(11.6)

[Quick Quiz 11.14: In Eq. 11.6, are the logarithms base-10, base-2, or base-e? .]

Figure 11.4 shows a plot of this function. Not surprisingly, the less
frequently each test run fails, the more test runs are required to be 99 %
confident that the bug has been at least partially fixed. If the bug caused
the test to fail only 1 % of the time, then a mind-boggling 458 test runs
are required. As the failure probability decreases, the number of test runs
required increases, going to infinity as the failure probability goes to zero.

The moral of this story is that when you have found a rarely occurring
bug, your testing job will be much easier if you can come up with a carefully
targeted test (or “reproducer”) with a much higher failure rate. For example,

503
1000 T T T T

100

—_
o

Number of Runs for 99% Confidence

1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Per-Run Failure Probability

Figure 11.4: Number of Tests Required for 99 Percent Confidence Given
Failure Rate

if your reproducer raised the failure rate from 1 % to 30 %, then the number
of runs required for 99 % confidence would drop from 458 to a more tractable
13.

But these thirteen test runs would only give you 99 % confidence that
your fix had produced “some improvement”. Suppose you instead want to
have 99 % confidence that your fix reduced the failure rate by an order of
magnitude. How many failure-free test runs are required?

An order of magnitude improvement from a 30 % failure rate would be
a 3 % failure rate. Plugging these numbers into Eq. 11.6 yields:

. log (1 —0.99)
" log (1 -0.03)

So our order of magnitude improvement requires roughly an order of
magnitude more testing. Certainty is impossible, and high probabilities
are quite expensive. This is why creating high-quality reproducers is
so important: Making tests run more quickly and making failures more

=151.2 (11.7)

504

probable are essential skills in the development of highly reliable software.
These skills will be covered in Section 11.6.4.

11.6.2 Statistics Abuse for Discrete Testing

But suppose that you have a continuous test that fails about three times every
ten hours, and that you fix the bug that you believe was causing the failure.
How long do you have to run this test without failure to be 99 % certain that
you reduced the probability of failure?

Without doing excessive violence to statistics, we could simply redefine
a one-hour run to be a discrete test that has a 30 % probability of failure.
Then the results of in the previous section tell us that if the test runs for
13 hours without failure, there is a 99 % probability that our fix actually
improved the program’s reliability.

A dogmatic statistician might not approve of this approach, but the
sad fact is that the errors introduced by this sort of statistical abuse are
usually quite small compared to the errors in your failure-rate estimates.
Nevertheless, the next section takes a more rigorous approach.

11.6.3 Statistics for Continuous Testing

The fundamental formula for failure probabilities is the Poisson distribution:

Fp=—e™* (11.8)
m

Here F,, is the probability of m failures in the test and A is the expected
failure rate per unit time. A rigorous derivation may be found in any
advanced probability textbook, for example, Feller’s classic “An Introduction
to Probability Theory and Its Applications” [Fel50], while a more intuitive
derivation may be found in the first edition of this book [McK 14c, Equations
11.8-11.26].

Let’s rework the example from Section 11.6.2 using the Poisson distri-
bution. Recall that this example involved an alleged fix for a bug with a
30 % failure rate per hour. If we need to be 99 % certain that the fix actually
reduced the failure rate, how long an error-free test run is required? In this
case, m is zero, so that Eq. 11.8 reduces to:

505

Fy=e* (11.9)

Solving this requires setting Fy to 0.01 and solving for A, resulting in:

A=-1n0.01 = 4.6 (11.10)

Because we get 0.3 failures per hour, the number of hours required is
4.6/0.3 = 14.3, which is within 10 % of the 13 hours calculated using the
method in Section 11.6.2. Given that you normally won’t know your failure
rate to anywhere near 10 %, the simpler method described in Section 11.6.2
is almost always good and sufficient.

However, those wanting to learn more about statistics for continuous
testing are encouraged to read on.

More generally, if we have n failures per unit time, and we want to be
P % certain that a fix reduced the failure rate, we can use the following
formula:

T__11n100—P
T on 100

(11.11)

Quick Quiz 11.15: Suppose that a bug causes a test failure three times per hour
on average. How long must the test run error-free to provide 99.9 % confidence
that the fix significantly reduced the probability of failure by at least a little bit? H

As before, the less frequently the bug occurs and the greater the required
level of confidence, the longer the required error-free test run.
Suppose that a given test fails about once every hour, but after a bug fix,
a 24-hour test run fails only twice. Assuming that the failure leading to the
bug is a random occurrence, what is the probability of a false negative? In
other words, how confident are we that the alleged fix actually had some
effect on the bug? This probability may be calculated by summing Eq. 11.8
as follows:
Fo+Fi+-+Fy +F,=)» —e*

i!
i=0

(11.12)

506

This is the Poisson cumulative distribution function, which can be
written more compactly as:

Figmzz,—e-ﬁ (11.13)
i=0
Here m is the actual number of errors in the long test run with the
alleged fix applied (in this case, two errors) and A is expected number of
errors in the long test run prior to applying the fix (in this case, 24 errors).
Plugging m = 2 and A = 24 into this expression gives the probability of a
false negative (that is, of two or fewer failures), as about 1.2 x 1078, in other
words, we have a high level of confidence that the fix actually had some
relationship to the bug.’
It is often more convenient to work with statistical confidences. When
the probability of a false negative is low, the confidence is high, giving this
result:

Cina =1—Zﬂ,—e—ﬂ (11.14)
i=0

Continuing our example withm = 2 and A = 24, this gives a confidence of
about 0.999999988, or equivalently, 99.9999988 %. This level of confidence
should satisfy all but the purest of purists.

But what if we are interested not in “some relationship” to the bug, but
instead in at least an order of magnitude reduction in its expected frequency
of occurrence? Then we divide A by ten, and plug m = 2 and A = 2.4 into
Eq. 11.14, which gives but a 90.9 % confidence level. This illustrates the sad
fact that increasing either statistical confidence or degree of improvement,
let alone both, can be quite expensive.

Quick Quiz 11.16: Doing the summation of all the factorials and exponentials is
areal pain. Isn’t there an easier way? W

7 Of course, this result in no way excuses you from finding and fixing the bug(s) causing
the remaining two failures!

507

Quick Quiz 11.17: But wait!!! Given that there has to be some number of failures
(including the possibility of zero failures), shouldn’t Eq. 11.13 approach the value
1 as m goes to infinity? W

The Poisson distribution is a powerful tool for analyzing test results,
but the fact is that in this last example there were still two remaining test
failures in a 24-hour test run. Such a low failure rate results in very long
test runs. The next section discusses counter-intuitive ways of improving
this situation.

11.6.4 Hunting Heisenbugs

This line of thought also helps explain heisenbugs: Adding tracing and
assertions can easily reduce the probability of a bug appearing, which is
why extremely lightweight tracing and assertion mechanism are so critically
important.

The term “heisenbug” was inspired by the Heisenberg Uncertainty
Principle from quantum physics, which states that it is impossible to exactly
quantify a given particle’s position and velocity at any given point in
time [Hei27]. Any attempt to more accurately measure that particle’s
position will result in increased uncertainty of its velocity and vice versa.
Similarly, attempts to track down the heisenbug causes its symptoms to
radically change or even disappear completely.® Of course, adding debugging
overhead can and sometimes does make bugs more probable. But developers
are more likely to remember the frustration of a disappearing heisenbug
than the joy inspired by the bug becoming more easily reproduced!

If the field of physics inspired the name of this problem, it is only fair
that the field of physics should inspire the solution. Fortunately, particle
physics is up to the task: Why not create an anti-heisenbug to annihilate the
heisenbug? Or, perhaps more accurately, to annihilate the heisen-ness of the
heisenbug? Although producing an anti-heisenbug for a given heisenbug
is more an art than a science, the following sections describe a number of
ways to do just that:

8 The term “heisenbug” is a misnomer, as most heisenbugs are fully explained by the
observer effect from classical physics. Nevertheless, the name has stuck.

508

1. Add delay to race-prone regions (Section 11.6.4.1).
2. Increase workload intensity (Section 11.6.4.2).

3. Isolate suspicious subsystems (Section 11.6.4.3).
4. Make rare events less rare (Section 11.6.4.4).

5. Count near misses (Section 11.6.4.5).
6

. Proactive hunting techniques (Section 11.6.4.6).

These are followed by discussion in Section 11.6.4.7.

11.6.4.1 Add Delay

Consider the count-lossy code in Section 5.1. Adding printf () statements
will likely greatly reduce or even eliminate the lost counts. However,
converting the load-add-store sequence to a load-add-delay-store sequence
will greatly increase the incidence of lost counts (try it!). Once you spot
a bug involving a race condition, it is frequently possible to create an
anti-heisenbug by adding delay in this manner.

Of course, this begs the question of how to find the race condition in
the first place. Although very lucky developers might accidentally create
delay-based anti-heisenbugs when adding debug code, this is in general a
dark art. Nevertheless, there are a number of things you can do to find your
race conditions.

One approach is to recognize that race conditions often end up corrupting
some of the data involved in the race. It is therefore good practice to double-
check the synchronization of any corrupted data. Even if you cannot
immediately recognize the race condition, adding delay before and after
accesses to the corrupted data might change the failure rate. By adding and
removing the delays in an organized fashion (e.g., binary search), you might
learn more about the workings of the race condition.

Quick Quiz 11.18: How is this approach supposed to help if the corruption
affected some unrelated pointer, which then caused the corruption??? W

509

Another important approach is to vary the software and hardware
configuration and look for statistically significant differences in failure rate.
For example, back in the 1990s, it was common practice to test on systems
having CPUs running at different clock rates, which tended to make some
types of race conditions more probable. One way of getting a similar effect
today is to test on multi-socket systems, thus incurring the large delays
described in Section 3.2.

However you choose to add delays, you can then look more intensively
at the code implicated by those delays that make the greatest difference in
failure rate. It might be helpful to test that code in isolation, for example.

One important aspect of software configuration is the history of changes,
which is why git bisect is so useful. Bisection of the change history
can provide very valuable clues as to the nature of the heisenbug, in this
case presumably by locating a commit that shows a change in the software’s
response to the addition or removal of a given delay.

Quick Quiz 11.19: But I did the bisection, and ended up with a huge commit.
What do I do now? H

Once you locate the suspicious section of code, you can then introduce
delays to attempt to increase the probability of failure. As we have seen,
increasing the probability of failure makes it much easier to gain high
confidence in the corresponding fix.

However, it is sometimes quite difficult to track down the problem using
normal debugging techniques. The following sections present some other
alternatives.

11.6.4.2 Increase Workload Intensity

It is often the case that a given test suite places relatively low stress on a
given subsystem, so that a small change in timing can cause a heisenbug to
disappear. One way to create an anti-heisenbug for this case is to increase
the workload intensity, which has a good chance of increasing the bug’s
probability. If the probability is increased sufficiently, it may be possible
to add lightweight diagnostics such as tracing without causing the bug to
vanish.

510

How can you increase the workload intensity? This depends on the
program, but here are some things to try:

1. Add more CPUs.

2. If the program uses networking, add more network adapters and more
or faster remote systems.

3. If the program is doing heavy I/O when the problem occurs, either (1)
add more storage devices, (2) use faster storage devices, for example,
substitute SSDs for disks, or (3) use a RAM-based filesystem to
substitute main memory for mass storage.

4. Change the size of the problem, for example, if doing a parallel
matrix multiply, change the size of the matrix. Larger problems may
introduce more complexity, but smaller problems often increase the
level of contention. If you aren’t sure whether you should go large or
go small, just try both.

However, it is often the case that the bug is in a specific subsystem, and
the structure of the program limits the amount of stress that can be applied
to that subsystem. The next section addresses this situation.

11.6.4.3 Isolate Suspicious Subsystems

If the program is structured such that it is difficult or impossible to apply
much stress to a subsystem that is under suspicion, a useful anti-heisenbug
is a stress test that tests that subsystem in isolation. The Linux kernel’s
rcutorture module takes exactly this approach with RCU: Applying
more stress to RCU than is feasible in a production environment increases
the probability that RCU bugs will be found during testing rather than in
production.’

In fact, when creating a parallel program, it is wise to stress-test the
components separately. Creating such component-level stress tests can seem
like a waste of time, but a little bit of component-level testing can save a
huge amount of system-level debugging.

9 Though sadly not increased to probability one.

511
11.6.4.4 Make Rare Events Less Rare

Heisenbugs are sometimes due to rare events, such as memory-allocation fail-
ure, conditional-lock-acquisition failure, CPU-hotplug operations, timeouts,
packet losses, large-scale changes in state, and so on. The corresponding
anti-heisenbug is thus simply to make these rare events happen much more
frequently. For example, the TREEO3 rcutorture scenario waits only 200 mil-
liseconds between CPU-hotplug operations. For another example, most of
the rcutorture scenarios emulate RCU callback flooding every minute. For
a final example, a memory-management stress test for x86 CPUs might do
well to frequently transition an aligned 2 MB block of memory back and
forth between 2 MB and 4 KB pages.

Another way to construct an anti-heisenbug for this class of heisenbug is
to introduce spurious failures. For example, instead of invoking malloc ()
directly, invoke a wrapper function that uses a random number to decide
whether to return NULL unconditionally on the one hand, or to actually
invoke malloc () and return the resulting pointer on the other. Inducing
spurious failures is an excellent way to bake robustness into sequential
programs as well as parallel programs.

Quick Quiz 11.20: Why don’t conditional-locking primitives provide this
spurious-failure functionality?

11.6.4.5 Count Near Misses

Bugs are often all-or-nothing things, so that a bug either happens or not,
with nothing in between. However, it is sometimes possible to define a near
miss where the bug does not result in a failure, but has likely manifested.
For example, suppose your code is making a robot walk. The robot’s falling
down constitutes a bug in your program, but stumbling and recovering
might constitute a near miss. If the robot falls over only once per hour, but
stumbles every few minutes, you might be able to speed up your debugging
progress by counting the number of stumbles in addition to the number of
falls.

In concurrent programs, timestamping can sometimes be used to detect
near misses. For example, locking primitives incur significant delays, so if

512

\ \
call_rcu()
/\/\er\ K
Grace-Period Start L@ _
S = e
L] s o]
E Grace-Period End «2 %
\/_\/ — v
Callback Invocation
\J el

Figure 11.5: RCU Errors and Near Misses

there is a too-short delay between a pair of operations that are supposed to
be protected by different acquisitions of the same lock, this too-short delay
might be counted as a near miss.”

For example, a low-probability bug in RCU priority boosting occurred
roughly once every hundred hours of focused rcutorture testing. Because
it would take almost 500 hours of failure-free testing to be 99 % certain
that the bug’s probability had been significantly reduced, the git bisect
process to find the failure would be painfully slow—or would require an
extremely large test farm. Fortunately, the RCU operation being tested
included not only a wait for an RCU grace period, but also a previous wait
for the grace period to start and a subsequent wait for an RCU callback to be
invoked after completion of the RCU grace period. This distinction between
an rcutorture error and near miss is shown in Figure 11.5. To qualify
as a full-fledged error, an RCU read-side critical section must extend from
the call_rcu() that initiated a grace period, through the remainder of the
previous grace period, through the entirety of the grace period initiated
by the call_rcu() (denoted by the region between the jagged lines), and
through the delay from the end of that grace period to the callback invocation,

10°Of course, in this case, you might be better off using whatever 1ock_held() primitive
is available in your environment. If there isn’t a Lock_held () primitive, create one!

513

as indicated by the “Error” arrow. However, the formal definition of RCU
prohibits RCU read-side critical sections from extending across a single
grace period, as indicated by the “Near Miss” arrow. This suggests using
near misses as the error condition, however, this can be problematic because
different CPUs can have different opinions as to exactly where a given grace
period starts and ends, as indicated by the jagged lines.!! Using the near
misses as the error condition could therefore result in false positives, which
need to be avoided in the automated rcutorture testing.

By sheer dumb luck, rcutorture happens to include some statistics that
are sensitive to the near-miss version of the grace period. As noted above,
these statistics are subject to false positives due to their unsynchronized
access to RCU’s state variables, but these false positives turn out to be
extremely rare on strongly ordered systems such as the IBM mainframe and
x86, occurring less than once per thousand hours of testing.

These near misses occurred roughly once per hour, about two orders of
magnitude more frequently than the actual errors. Use of these near misses
allowed the bug’s root cause to be identified in less than a week and a high
degree of confidence in the fix to be built in less than a day. In contrast,
excluding the near misses in favor of the real errors would have required
months of debug and validation time.

To sum up near-miss counting, the general approach is to replace
counting of infrequent failures with more-frequent near misses that are
believed to be correlated with those failures. These near-misses can be
considered an anti-heisenbug to the real failure’s heisenbug because the
near-misses, being more frequent, are likely to be more robust in the face of
changes to your code, for example, the changes you make to add debugging
code.

11.6.4.6 Proactive Hunting Techniques

Most of the anti-heisenbug techniques discussed in the precending sections
are backwards looking. After all, prior experience is the best guide to
knowing which regions of code are prone to race conditions, what aspects of

11 In real life, these lines can be much more jagged because idle CPUs can be completely
unaware of a great many recent grace periods.

514

the workload can most profitably be increased in intensity, which subsystems
are deserving of suspicion, which rare events are important, and what near
misses are good proxies for actual failures.

What can you do to get ahead of the game?

Getting ahead of the anti-heisenbug game is even more of an art than
constructing an anti-heisenbug for a specific situation, but here are some
techniques that can be helpful:

1. Add delay to sections of concurrent code that required the most
analysis, that needed formal verification, or that deviated the most
from common concurrency practice.

2. Analyze trends in workload intensity, and use the results to guide
increasing the intensity of your testing.

3. Be most suspicious of new code, especially if it is your new code.

4. Instrument your workload, looking for complex operations that occur
frequently enough to be an uptime problem but rarely enough to avoid
much exposure in your current testing.

5. Look for near misses in failure-recovery code and on slowpaths.

Finally, and most importantly, pay special attention to code that people
are the most proud of. After all, people are most likely to be proud of code
that is unusual, which means that its bugs (and the bugs in the code that it
uses) are likely to escape your usual testing efforts.

11.6.4.7 Heisenbug Discussion

The alert reader might have noticed that this section was fuzzy and qualitative,
in stark contrast to the precise mathematics of Sections 11.6.1, 11.6.2,
and 11.6.3. If you love precision and mathematics, you may be disappointed
to learn that the situations to which this section applies are far more common
than those to which the preceding sections apply.

In fact, the common case is that although you might have reason to
believe that your code has bugs, you have no idea what those bugs are,
what causes them, how likely they are to appear, or what conditions affect

515

their probability of appearance. In this all-too-common case, statistics
cannot help you.!? That is to say, statistics cannot help you directly. But
statistics can be of great indirect help—if you have the humility required to
admit that you make mistakes, that you can reduce the probability of these
mistakes (for example, by getting enough sleep), and that the number and
type of mistakes you made in the past is indicative of the number and type
of mistakes that you are likely to make in the future. For example, I have
a deplorable tendency to forget to write a small but critical portion of the
initialization code, and frequently get most or even all of a parallel program
correct—except for a stupid omission in initialization. Once I was willing
to admit to myself that I am prone to this type of mistake, it was easier (but
not easy!) to force myself to double-check my initialization code. Doing
this allowed me to find numerous bugs ahead of time.

When your quick bug hunt morphs into a long-term quest, it is important
to log everything you have tried and what happened. In the common case
where the software is changing during the course of your quest, make sure
to record the exact version of the software to which each log entry applies.
From time to time, reread the entire log in order to make connections
between clues encountered at different times. Such rereading is especially
important upon encountering a surprising test result, for example, I reread
my log upon realizing that what I thought was a failure of the hypervisor
to schedule a vCPU was instead an interrupt storm preventing that vCPU
from making forward progress on the interrupted code. If the code you are
debugging is new to you, this log is also an excellent place to document the
relationships between code and data structures. Keeping a log when you are
furiously chasing a difficult bug might seem like needless paperwork, but
it has on many occasions saved me from debugging around and around in
circles, which can waste far more time than keeping a log ever could.

Using Taleb’s nomenclature [Tal07], a white swan is a bug that we can
reproduce. We can run a large number of tests, use ordinary statistics to
estimate the bug’s probability, and use ordinary statistics again to estimate
our confidence in a proposed fix. An unsuspected bug is a black swan. We

12 Although if you know what your program is supposed to do and if your program is small
enough (both less likely that you might think), then the formal-verification tools described in
Chapter 12 can be helpful.

516

know nothing about it, we have no tests that have yet caused it to happen, and
statistics is of no help. Studying our own behavior, especially the number
and types of mistakes we make, can turn black swans into grey swans. We
might not know exactly what the bugs are, but we have some idea of their
number and maybe also of their type. Ordinary statistics is still of no help (at
least not until we are able to reproduce one of the bugs), but robust!? testing
methods can be of great help. The goal, therefore, is to use experience and
good validation practices to turn the black swans grey, focused testing and
analysis to turn the grey swans white, and ordinary methods to fix the white
swans.

That said, thus far, we have focused solely on bugs in the parallel
program’s functionality. However, performance is a first-class requirement
for a parallel program. Otherwise, why not write a sequential program?
To repurpose Kipling, our goal when writing parallel code is to fill the
unforgiving second with sixty minutes worth of distance run. The next
section therefore discusses a number of performance bugs that would be
happy to thwart this Kiplingesque goal.

11.7 Performance Estimation

There are lies, damn lies, statistics, and benchmarks.

UNKNOWN

Parallel programs usually have performance and scalability requirements,
after all, if performance is not an issue, why not use a sequential program?
Ultimate performance and linear scalability might not be necessary, but
there is little use for a parallel program that runs slower than its optimal
sequential counterpart. And there really are cases where every microsecond
matters and every nanosecond is needed. Therefore, for parallel programs,
insufficient performance is just as much a bug as is incorrectness.

Quick Quiz 11.21: That is ridiculous!!! After all, isn’t getting a late but correct
answer always better than getting an incorrect answer???

13 That is to say brutal.

517

Quick Quiz 11.22: But if you are going to put in all the hard work of parallelizing
an application, why not do it right? Why settle for anything less than optimal
performance and linear scalability? B

Validating a parallel program must therfore include validating its perfor-
mance. But validating performance means having a workload to run and
performance criteria with which to evaluate the program at hand. These
needs are often met by performance benchmarks, which are discussed in
the next section.

11.7.1 Benchmarking

Frequent abuse aside, benchmarks are both useful and heavily used, so it is
not helpful to be too dismissive of them. Benchmarks span the range from
ad hoc test jigs to international standards, but regardless of their level of
formality, benchmarks serve four major purposes:

1. Providing a fair framework for comparing competing implementations.

2. Focusing competitive energy on improving implementations in ways
that matter to users.

3. Serving as example uses of the implementations being benchmarked.

4. Serving as a marketing tool to highlight your software against your
competitors’ offerings.

Of course, the only completely fair framework is the intended application
itself. So why would anyone who cared about fairness in benchmarking
bother creating imperfect benchmarks rather than simply using the applica-
tion itself as the benchmark?

Running the actual application is in fact the best approach where it is
practical. Unfortunately, it is often impractical for the following reasons:

1. The application might be proprietary, and you might not have the
right to run the intended application.

2. The application might require more hardware than you have access to.

518

3. The application might use data that you cannot access, for example,
due to privacy regulations.

4. The application might take longer than is convenient to reproduce a
performance or scalability problem.!*

Creating a benchmark that approximates the application can help over-
come these obstacles. A carefully constructed benchmark can help promote
performance, scalability, energy efficiency, and much else besides. However,
be careful to avoid investing too much into the benchmarking effort. It is
after all important to invest at least a little into the application itself [Gra91].

11.7.2 Profiling

In many cases, a fairly small portion of your software is responsible for the
majority of the performance and scalability shortfall. However, developers
are notoriously unable to identify the actual bottlenecks by inspection. For
example, in the case of a kernel buffer allocator, all attention focused on a
search of a dense array which turned out to represent only a few percent of
the allocator’s execution time. An execution profile collected via a logic
analyzer focused attention on the cache misses that were actually responsible
for the majority of the problem [MS93].

An old-school but quite effective method of tracking down performance
and scalability bugs is to run your program under a debugger, then period-
ically interrupt it, recording the stacks of all threads at each interruption.
The theory here is that if something is slowing down your program, it has to
be visible in your threads’ executions.

That said, there are a number of tools that will usually do a much
better job of helping you to focus your attention where it will do the most
good. Two popular choices are gprof and perf. To use perf on a single-
process program, prefix your command with perf record, then after the
command completes, type perf report. There is a lot of work on tools
for performance debugging of multi-threaded programs, which should make

14 Microbenchmarks can help, but please see Section 11.7.4.

519

this important job easier. Again, one good starting point is Brendan Gregg’s
blog."

11.7.3 Differential Profiling

Scalability problems will not necessarily be apparent unless you are running
on very large systems. However, it is sometimes possible to detect impending
scalability problems even when running on much smaller systems. One
technique for doing this is called differential profiling.

The idea is to run your workload under two different sets of conditions.
For example, you might run it on two CPUs, then run it again on four CPUs.
You might instead vary the load placed on the system, the number of network
adapters, the number of mass-storage devices, and so on. You then collect
profiles of the two runs, and mathematically combine corresponding profile
measurements. For example, if your main concern is scalability, you might
take the ratio of corresponding measurements, and then sort the ratios into
descending numerical order. The prime scalability suspects will then be
sorted to the top of the list [McK95, McK99].

Some tools such as perf have built-in differential-profiling support.

11.7.4 Microbenchmarking

Microbenchmarking can be useful when deciding which algorithms or data
structures are worth incorporating into a larger body of software for deeper
evaluation.

One common approach to microbenchmarking is to measure the time,
run some number of iterations of the code under test, then measure the
time again. The difference between the two times divided by the number of
iterations gives the measured time required to execute the code under test.

Unfortunately, this approach to measurement allows any number of
errors to creep in, including:

1. The measurement will include some of the overhead of the time
measurement. This source of error can be reduced to an arbitrarily
small value by increasing the number of iterations.

5 http://www.brendangregg.com/blog/

http://www.brendangregg.com/blog/

520

2. The first few iterations of the test might incur cache misses or (worse
yet) page faults that might inflate the measured value. This source of
error can also be reduced by increasing the number of iterations, or it
can often be eliminated entirely by running a few warm-up iterations
before starting the measurement period. Most systems have ways
of detecting whether a given process incurred a page fault, and you
should make use of this to reject runs whose performance has been
thus impeded.

3. Some types of interference, for example, random memory errors,
are so rare that they can be dealt with by running a number of sets
of iterations of the test. If the level of interference was statistically
significant, any performance outliers could be rejected statistically.

4. Any iteration of the test might be interfered with by other activity
on the system. Sources of interference include other applications,
system utilities and daemons, device interrupts, firmware interrupts
(including system management interrupts, or SMIs), virtualization,
memory errors, and much else besides. Assuming that these sources
of interference occur randomly, their effect can be minimized by
reducing the number of iterations.

5. Thermal throttling can understate scalability because increasing
CPU activity increases heat generation, and on systems without
adequate cooling (most of them!), this can result in the CPU frequency
decreasing as the number of CPUs increases.'® Of course, if you
are testing an application to evaluate its expected behavior when
run in production, such thermal throttling is simply a fact of life.
Otherwise, if you are interested in theoretical scalability, use a system
with adequate cooling or reduce the CPU clock rate to a level that the
cooling system can handle.

The first and fourth sources of interference provide conflicting advice,
which is one sign that we are living in the real world.

16 Systems with adequate cooling tend to look like gaming systems.

521

Quick Quiz 11.23: But what about other sources of error, for example, due to
interactions between caches and memory layout? W

The following sections discuss ways of dealing with these measurement
errors, with Section 11.7.5 covering isolation techniques that may be used
to prevent some forms of interference, and with Section 11.7.6 covering
methods for detecting interference so as to reject measurement data that
might have been corrupted by that interference.

11.7.5 Isolation

The Linux kernel provides a number of ways to isolate a group of CPUs
from outside interference.

First, let’s look at interference by other processes, threads, and tasks.
The POSIX sched_setaffinity() system call may be used to move
most tasks off of a given set of CPUs and to confine your tests to that
same group. The Linux-specific user-level taskset command may be used
for the same purpose, though both sched_setaffinity() and taskset
require elevated permissions. Linux-specific control groups (cgroups) may
be used for this same purpose. This approach can be quite effective at
reducing interference, and is sufficient in many cases. However, it does have
limitations, for example, it cannot do anything about the per-CPU kernel
threads that are often used for housekeeping tasks.

One way to avoid interference from per-CPU kernel threads is to run
your test at a high real-time priority, for example, by using the POSIX
sched_setscheduler () system call. However, note that if you do this,
you are implicitly taking on responsibility for avoiding infinite loops, because
otherwise your test can prevent part of the kernel from functioning. This
is an example of the Spiderman Principle: “With great power comes great
responsibility.” And although the default real-time throttling settings often
address such problems, they might do so by causing your real-time threads
to miss their deadlines.

These approaches can greatly reduce, and perhaps even eliminate,
interference from processes, threads, and tasks. However, it does nothing
to prevent interference from device interrupts, at least in the absence of
threaded interrupts. Linux allows some control of threaded interrupts

522

via the /proc/irq directory, which contains numerical directories, one
per interrupt vector. Each numerical directory contains smp_affinity
and smp_affinity_list. Given sufficient permissions, you can write a
value to these files to restrict interrupts to the specified set of CPUs. For
example, either “echo 3 > /proc/irq/23/smp_affinity” or “echo
0-1 > /proc/irq/23/smp_affinity_list” would confine interrupts
on vector 23 to CPUs 0 and 1, at least given sufficient privileges. You can
use “cat /proc/interrupts” to obtain a list of the interrupt vectors on
your system, how many are handled by each CPU, and what devices use
each interrupt vector.

Running a similar command for all interrupt vectors on your system
would confine interrupts to CPUs 0 and 1, leaving the remaining CPUs free
of interference. Or mostly free of interference, anyway. It turns out that
the scheduling-clock interrupt fires on each CPU that is running in user
mode.!” In addition you must take care to ensure that the set of CPUs that
you confine the interrupts to is capable of handling the load.

But this only handles processes and interrupts running in the same
operating-system instance as the test. Suppose that you are running the
test in a guest OS that is itself running on a hypervisor, for example, Linux
running KVM? Although you can in theory apply the same techniques at
the hypervisor level that you can at the guest-OS level, it is quite common
for hypervisor-level operations to be restricted to authorized personnel. In
addition, none of these techniques work against firmware-level interference.

Quick Quiz 11.24: Wouldn’t the techniques suggested to isolate the code under
test also affect that code’s performance, particularly if it is running within a larger
application? W

Of course, if it is in fact the interference that is producing the behavior
of interest, you will instead need to promote interference, in which case
being unable to prevent it is not a problem. But if you really do need
interference-free measurements, then instead of preventing the interference,
you might need to detect the interference as described in the next section.

17 Frederic Weisbecker leads up a NO_HZ_FULL adaptive-ticks project that allows scheduling-
clock interrupts to be disabled on CPUs that have only one runnable task. As of 2021, this is
largely complete.

w
)
)

Listing 11.1: Using getrusage () to Detect Context Switches

1 #include <sys/time.h>

2 #include <sys/resource.h>

3

4 /* Return O if test results should be rejected. */
5 int runtest(void)

6 {

7 struct rusage rul;

8 struct rusage ru2;

9

10 if (getrusage (RUSAGE_SELF, &ruil) !'= 0) {
1 perror ("getrusage") ;

12 abort () ;

13 }

14 /* run test here. */

15 if (getrusage(RUSAGE_SELF, &ru2 != 0) {
16 perror("getrusage") ;

17 abort () ;

18 }

19 return (rul.ru_nvecsw == ru2.ru_nvcsw &&
20 rul.ru_nivcsw == ru2.ru_nivcsw);
21 }

11.7.6 Detecting Interference

If you cannot prevent interference, perhaps you can detect it and reject
results from any affected test runs. Section 11.7.6.1 describes methods
of rejection involving additional measurements, while Section 11.7.6.2
describes statistics-based rejection.

11.7.6.1 Detecting Interference Via Measurement

Many systems, including Linux, provide means for determining after the
fact whether some forms of interference have occurred. For example,
process-based interference results in context switches, which, on Linux-
based systems, are visible in /proc/<PID>/sched via the nr_switches
field. Similarly, interrupt-based interference can be detected via the /proc/
interrupts file.

Opening and reading files is not the way to low overhead, and it is
possible to get the count of context switches for a given thread by using the
getrusage () system call, as shown in Listing 11.1. This same system call

524

can be used to detect minor page faults (ru_minf1t) and major page faults
(ru_majflt).

Unfortunately, detecting memory errors and firmware interference is
quite system-specific, as is the detection of interference due to virtualization.
Although avoidance is better than detection, and detection is better than
statistics, there are times when one must avail oneself of statistics, a topic
addressed in the next section.

11.7.6.2 Detecting Interference Via Statistics

Any statistical analysis will be based on assumptions about the data, and
performance microbenchmarks often support the following assumptions:

1. Smaller measurements are more likely to be accurate than larger
measurements.

2. The measurement uncertainty of good data is known.

3. A reasonable fraction of the test runs will result in good data.

The fact that smaller measurements are more likely to be accurate than
larger measurements suggests that sorting the measurements in increasing
order is likely to be productive.'® The fact that the measurement uncertainty
is known allows us to accept measurements within this uncertainty of each
other: If the effects of interference are large compared to this uncertainty,
this will ease rejection of bad data. Finally, the fact that some fraction (for
example, one third) can be assumed to be good allows us to blindly accept
the first portion of the sorted list, and this data can then be used to gain an
estimate of the natural variation of the measured data, over and above the
assumed measurement error.

The approach is to take the specified number of leading elements from
the beginning of the sorted list, and use these to estimate a typical inter-
element delta, which in turn may be multiplied by the number of elements
in the list to obtain an upper bound on permissible values. The algorithm
then repeatedly considers the next element of the list. If it falls below the

18 To paraphrase the old saying, “Sort first and ask questions later.”

525

upper bound, and if the distance between the next element and the previous
element is not too much greater than the average inter-element distance for
the portion of the list accepted thus far, then the next element is accepted
and the process repeats. Otherwise, the remainder of the list is rejected.
Listing 11.2 shows a simple sh/awk script implementing this notion.
Input consists of an x-value followed by an arbitrarily long list of y-values,
and output consists of one line for each input line, with fields as follows:

1.

6.

The x-value.

The average of the selected data.
The minimum of the selected data.
The maximum of the selected data.
The number of selected data items.

The number of input data items.

This script takes three optional arguments as follows:

--divisor: Number of segments to divide the list into, for example, a

divisor of four means that the first quarter of the data elements will
be assumed to be good. This defaults to three.

--relerr: Relative measurement error. The script assumes that values

that differ by less than this error are for all intents and purposes equal.
This defaults to 0.01, which is equivalent to 1 %.

--trendbreak: Ratio of inter-element spacing constituting a break in the

trend of the data. For example, if the average spacing in the data
accepted so far is 1.5, then if the trend-break ratio is 2.0, then if
the next data value differs from the last one by more than 3.0, this
constitutes a break in the trend. (Unless of course, the relative error
is greater than 3.0, in which case the “break” will be ignored.)

526

Listing 11.2: Statistical Elimination of Interference

1 div=3

2 rel=0.01

3 tre=10

4 while test $# -gt O

5 do

6 case "$1" in
7 --divisor)

8 shift
9 div=$1
10 HH

1 --relerr)

12 shift
13 rel=$1
14 HY

15 --trendbreak)
16 shift
17 tre=$1
18 HY

19 esac

20 shift

21 done

23 awk -v divisor=$div -v relerr=$rel -v trendbreak=$tre '{

24 for (i = 2; i <= NF; i++)

25 dli - 1] = $i;

26 asort(d) ;

27 i = int((NF + divisor - 1) / divisor);

28 delta = d[i] - d[1];

29 maxdelta = delta * divisor;

30 maxdeltal = delta + d[i] * relerr;

31 if (maxdeltal > maxdelta)

32 maxdelta = maxdeltal;

33 for (j =i+ 1; j < NF; j++) {

34 if (j <= 2)

35 maxdiff = d[NF - 1] - d[1];
36 else

37 maxdiff = trendbreak * (d[j - 1] - d[1]) / (j - 2);
38 if (d[j] - d[1] > maxdelta && d[j] - d[j - 1] > maxdiff)
39 break;

40 }

41 n = sum = 0;

42 for (k = 1; k < j; k++) {

43 sum += d[k];

44 n++;

45 ¥

46 min = d[1];

47 max = d[j - 1];

48 avg = sum / n;

49 print $1, avg, min, max, n, NF - 1;

50 }'

527

Lines 1-3 of Listing 11.2 set the default values for the parameters, and
lines 4-21 parse any command-line overriding of these parameters. The
awk invocation on line 23 sets the values of the divisor, relerr, and
trendbreak variables to their sh counterparts. In the usual awk manner,
lines 24-50 are executed on each input line. The loop spanning lines 24
and 25 copies the input y-values to the d array, which line 26 sorts into
increasing order. Line 27 computes the number of trustworthy y-values by
applying divisor and rounding up.

Lines 28-32 compute the maxdelta lower bound on the upper bound
of y-values. To this end, line 29 multiplies the difference in values over the
trusted region of data by the divisor, which projects the difference in values
across the trusted region across the entire set of y-values. However, this
value might well be much smaller than the relative error, so line 30 computes
the absolute error (d[i] * relerr) and adds that to the difference delta
across the trusted portion of the data. Lines 31 and 32 then compute the
maximum of these two values.

Each pass through the loop spanning lines 33—40 attempts to add another
data value to the set of good data. Lines 34-39 compute the trend-break
delta, with line 34 disabling this limit if we don’t yet have enough values to
compute a trend, and with line 37 multiplying trendbreak by the average
difference between pairs of data values in the good set. If line 38 determines
that the candidate data value would exceed the lower bound on the upper
bound (maxdelta) and that the difference between the candidate data value
and its predecessor exceeds the trend-break difference (maxdiff), then
line 39 exits the loop: We have the full good set of data.

Lines 4149 then compute and print statistics.

Quick Quiz 11.25: This approach is just plain weird! Why not use means and
standard deviations, like we were taught in our statistics classes? W

Quick Quiz 11.26: But what if all the y-values in the trusted group of data are
exactly zero? Won’t that cause the script to reject any non-zero value? W

Although statistical interference detection can be quite useful, it should
be used only as a last resort. Where feasible, it is far better to avoid
interference in the first place (Section 11.7.5), or, failing that, detecting
interference via measurement (Section 11.7.6.1).

528

Never forget that for any statistical method that you create, there is a
dataset out there that will defeat it, thus making fools of both you and your
method. Therefore, the more creative you are, the more careful you must
be!

11.8 Summary

To err is human! Stop being human!!!

Ep NOFZIGER

Although validation never will be an exact science, much can be gained by
taking an organized approach to it, as an organized approach will help you
choose the right validation tools for your job, avoiding situations like the
one fancifully depicted in Figure 11.6.

A key choice is that of statistics. Although the methods described in
this chapter work very well most of the time, they do have their limitations,
courtesy of the Halting Problem [Tur37, PulO0O]. Fortunately for us, there is
a huge number of special cases in which we can not only work out whether
a program will halt, but also estimate how long it will run before halting, as
discussed in Section 11.7. Furthermore, in cases where a given program

Figure 11.6: Choose Validation Methods Wisely

529

might or might not work correctly, we can often establish estimates for what
fraction of the time it will work correctly, as discussed in Section 11.6.

Nevertheless, unthinking reliance on these estimates is brave to the point
of foolhardiness. After all, we are summarizing a huge mass of complexity
in code and data structures down to a single solitary number. Even though
we can get away with such bravery a surprisingly large fraction of the
time, abstracting all that code and data away will occasionally cause severe
problems.

One possible problem is variability, where repeated runs give wildly
different results. This problem is often addressed using standard deviation,
however, using two numbers to summarize the behavior of a large and
complex program is about as brave as using only one number. In computer
programming, the surprising thing is that use of the mean or the mean and
standard deviation are often sufficient. Nevertheless, there are no guarantees.

One cause of variation is confounding factors. For example, the CPU
time consumed by a linked-list search will depend on the length of the list.
Averaging together runs with wildly different list lengths will probably not
be useful, and adding a standard deviation to the mean will not be much
better. The right thing to do would be control for list length, either by
holding the length constant or to measure CPU time as a function of list
length.

Of course, this advice assumes that you are aware of the confounding
factors, and Murphy says that you will not be. I have been involved in
projects that had confounding factors as diverse as air conditioners (which
drew considerable power at startup, thus causing the voltage supplied to
the computer to momentarily drop too low, sometimes resulting in failure),
cache state (resulting in odd variations in performance), I/O errors (including
disk errors, packet loss, and duplicate Ethernet MAC addresses), and even
porpoises (which could not resist playing with an array of transponders,
which could be otherwise used for high-precision acoustic positioning and
navigation). And this is but one reason why a good night’s sleep is such an
effective debugging tool.

In short, validation always will require some measure of the behavior of
the system. To be at all useful, this measure must be a severe summarization

530

of the system, which in turn means that it can be misleading. So as the
saying goes, “Be careful. It is a real world out there.”

But what if you are working on the Linux kernel, which as of 2017 was
estimated to have more than 20 billion instances running throughout the
world? In that case, a bug that occurs once every million years on a single
system will be encountered more than 50 times per day across the installed
base. A test with a 50 % chance of encountering this bug in a one-hour run
would need to increase that bug’s probability of occurrence by more than
ten orders of magnitude, which poses a severe challenge to today’s testing
methodologies. One important tool that can sometimes be applied with
good effect to such situations is formal verification, the subject of the next
chapter, and, more speculatively, Section 17.4.

The topic of choosing a validation plan, be it testing, formal verification,
or both, is taken up by Section 12.7.

Chapter 12
Formal Verification

Beware of bugs in the above code; | have only proved
it correct, not tried it.

DoNALD KNUTH

Parallel algorithms can be hard to write, and even harder to debug. Testing,
though essential, is insufficient, as fatal race conditions can have extremely
low probabilities of occurrence. Proofs of correctness can be valuable, but
in the end are just as prone to human error as is the original algorithm. In
addition, a proof of correctness cannot be expected to find errors in your
assumptions, shortcomings in the requirements, misunderstandings of the
underlying software or hardware primitives, or errors that you did not think
to construct a proof for. This means that formal methods can never replace
testing. Nevertheless, formal methods can be a valuable addition to your
validation toolbox.

It would be very helpful to have a tool that could somehow locate all race
conditions. A number of such tools exist, for example, Section 12.1 provides
an introduction to the general-purpose state-space search tools Promela
and Spin, Section 12.2 similarly introduces the special-purpose ppcmem
tool, Section 12.3 looks at an example axiomatic approach, Section 12.4
briefly overviews SAT solvers, Section 12.5 briefly overviews stateless
model checkers, Section 12.6 sums up use of formal-verification tools for
verifying parallel algorithms, and finally Section 12.7 discusses how to
decide how much and what type of validation to apply to a given software
project.

12.1 State-Space Search

Follow every byway / Every path you know.

CLimB EVERY MOUNTAIN, RODGERS ¢ HAMMERSTEIN

This section features the general-purpose Promela and Spin tools, which
may be used to carry out a full state-space search of many types of
multi-threaded code. They are used to verifying data communication
protocols. Section 12.1.1 introduces Promela and Spin, including a couple
of warm-up exercises verifying both non-atomic and atomic increment.
Section 12.1.2 describes use of Promela, including example command lines
and a comparison of Promela syntax to that of C. Section 12.1.3 shows
how Promela may be used to verify locking, Section 12.1.4 uses Promela
to verify an unusual implementation of RCU named “QRCU”, and finally
Section 12.1.5 applies Promela to early versions of RCU’s dyntick-idle
implementation.

12.1.1 Promela and Spin

Promela is a language designed to help verify protocols, but which can also
be used to verify small parallel algorithms. You recode your algorithm
and correctness constraints in the C-like language Promela, and then use
Spin to translate it into a C program that you can compile and run. The
resulting program carries out a full state-space search of your algorithm,
either verifying or finding counter-examples for assertions that you can
associate with in your Promela program.

This full-state search can be extremely powerful, but can also be a
two-edged sword. If your algorithm is too complex or your Promela
implementation is careless, there might be more states than fit in memory.
Furthermore, even given sufficient memory, the state-space search might
well run for longer than the expected lifetime of the universe. Therefore, use
this tool for compact but complex parallel algorithms. Attempts to naively
apply it to even moderate-scale algorithms (let alone the full Linux kernel)
will end badly.

527
533

Promela and Spin may be downloaded from https://spinroot.com/
spin/whatispin.html.

The above site also gives links to Gerard Holzmann’s excellent
book [Hol03] on Promela and Spin, as well as searchable online references
starting at: https://www.spinroot.com/spin/Man/index.html.

The remainder of this section describes how to use Promela to debug
parallel algorithms, starting with simple examples and progressing to more
complex uses.

12.1.1.1 Warm-Up: Non-Atomic Increment

Listing 12.1 demonstrates the textbook race condition resulting from non-
atomic increment. Line 1 defines the number of processes to run (we will
vary this to see the effect on state space), line 3 defines the counter, and
line 4 is used to implement the assertion that appears on lines 29-39.

Lines 6—13 define a process that increments the counter non-atomically.
The argument me is the process number, set by the initialization block later
in the code. Because simple Promela statements are each assumed atomic,
we must break the increment into the two statements on lines 10—11. The
assignment on line 12 marks the process’s completion. Because the Spin
system will fully search the state space, including all possible sequences
of states, there is no need for the loop that would be used for conventional
stress testing.

Lines 15-40 are the initialization block, which is executed first.
Lines 19-28 actually do the initialization, while lines 29-39 perform
the assertion. Both are atomic blocks in order to avoid unnecessarily
increasing the state space: Because they are not part of the algorithm proper,
we lose no verification coverage by making them atomic.

The do-od construct on lines 21-27 implements a Promela loop, which
can be thought of as a C for (;;) loop containing a switch statement
that allows expressions in case labels. The condition blocks (prefixed by
: 1) are scanned non-deterministically, though in this case only one of the
conditions can possibly hold at a given time. The first block of the do-od
from lines 22-25 initializes the i-th incrementer’s progress cell, runs the
i-th incrementer’s process, and then increments the variable i. The second

https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html
https://www.spinroot.com/spin/Man/index.html

W

Listing 12.1: Promela Code for Non-Atomic Increment

#define NUMPROCS 2

1

2

3 byte counter = 0;

4 byte progress[NUMPROCS] ;

5

6 proctype incrementer(byte me)

7

8 int temp;

9

10 temp = counter;

11 counter = temp + 1;

12 progress[me] = 1;

13}

14

15 init {

16 int i = 03

17 int sum = 0;

18

19 atomic {

20 i=0;

21 do

22 :: i < NUMPROCS —->

23 progress[i] = 0;
24 run incrementer(i);
25 it++;

26 :: i >= NUMPROCS -> break;
27 od;

28 b

29 atomic {

30 i

31 s

32 do

33 :: i < NUMPROCS ->

34 sum = sum + progress[i];
35 i++

36 :: i >= NUMPROCS -> break;
37 od;

38 assert(sum < NUMPROCS || counter == NUMPROCS);
39 }

W
[

Listing 12.2: Non-Atomic Increment Spin Output

pan:1: assertion violated
((sum<2) | | (counter==2)) (at depth 22)
pan: wrote increment.spin.trail

(Spin Version 6.4.8 -- 2 March 2018)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 48 byte, depth reached 24, errors: 1
45 states, stored
13 states, matched
58 transitions (= stored+matched)
53 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.003 equivalent memory usage for states
(stored*(State-vector + overhead))
0.290 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

block of the do-od on line 26 exits the loop once these processes have been
started.

The atomic block on lines 29-39 also contains a similar do-od loop
that sums up the progress counters. The assert () statement on line 38
verifies that if all processes have been completed, then all counts have been
correctly recorded.

You can build and run this program as follows:

spin -a increment.spin # Translate the model to C
cc -DSAFETY -o pan pan.c # Compile the model
./pan # Run the model

This will produce output as shown in Listing 12.2. The first line
tells us that our assertion was violated (as expected given the non-atomic
increment!). The second line that a trail file was written describing how

536

the assertion was violated. The “Warning” line reiterates that all was not well
with our model. The second paragraph describes the type of state-search
being carried out, in this case for assertion violations and invalid end states.
The third paragraph gives state-size statistics: This small model had only
45 states. The final line shows memory usage.

The trail file may be rendered human-readable as follows:

spin -t -p increment.spin

This gives the output shown in Listing 12.3. As can be seen, the first
portion of the init block created both incrementer processes, both of which
first fetched the counter, then both incremented and stored it, losing a count.
The assertion then triggered, after which the global state is displayed.

12.1.1.2 Warm-Up: Atomic Increment

It is easy to fix this example by placing the body of the incrementer processes
in an atomic block as shown in Listing 12.4. One could also have simply
replaced the pair of statements with counter = counter + 1, because
Promela statements are atomic. Either way, running this modified model
gives us an error-free traversal of the state space, as shown in Listing 12.5.
Table 12.1 shows the number of states and memory consumed as a
function of number of incrementers modeled (by redefining NUMPROCS):
Running unnecessarily large models is thus subtly discouraged, although
882 MB is well within the limits of modern desktop and laptop machines.
With this example under our belt, let’s take a closer look at the commands
used to analyze Promela models and then look at more elaborate examples.

12.1.2 How to Use Promela

Given a source file qrcu. spin, one can use the following commands:

spin -a qgrcu.spin
Create a file pan. c that fully searches the state machine.

W
)
3

Listing 12.3: Non-Atomic Increment Error Trail

using statement merging

1: proc 0 (:init::1) increment.spin:21 (state 1) [i = 0]

2: proc 0 (:init::1) increment.spin:23 (state 2) [((i<2))]

2: proc 0 (:init::1) increment.spin:24 (state 3) [progress[i] = 0]

Starting incrementer with pid 1

3: proc 0 (:init::1) increment.spin:25 (state 4) [(run incrementer(i))]

4: proc 0 (:init::1) increment.spin:26 (state 5) [i = (i+1)]

5: proc 0 (:init::1) increment.spin:23 (state 2) [((i<2))]

5: proc 0 (:init::1) increment.spin:24 (state 3) [progress[i] = 0]

Starting incrementer with pid 2

6: proc 0 (:init::1) increment.spin:25 (state 4) [(run incrementer(i))]

7: proc 0 (:init::1) increment.spin:26 (state 5) [i = (i+1)]

8: proc 0 (:init::1) increment.spin:27 (state 6) [((i>=2))]

9: proc 0 (:init::1) increment.spin:22 (state 10) [break]

10: proc 2 (incrementer:1) increment.spin:11 (state 1) [temp = counter]
11: proc 1 (incrementer:1) increment.spin:11 (state 1) [temp = counter]
12: proc 2 (incrementer:1) increment.spin:12 (state 2) [counter = (temp+1)]
13: proc 2 (incrementer:1) increment.spin:13 (state 3) [progress([me] = 1]
14: proc 2 terminates

15: proc 1 (incrementer:1) increment.spin:12 (state 2) [counter = (temp+1)]
16: proc 1 (incrementer:1) increment.spin:13 (state 3) [progress[me] = 1]
17: proc 1 terminates

18: proc 0 (:init::1) increment.spin:31 (state 12) [i = 0]

18: proc 0 (:init::1) increment.spin:32 (state 13) [sum = 0]

19: proc O (:init::1) increment.spin:34 (state 14) [((i<2))]

19: proc 0 (:init::1) increment.spin:35 (state 15) [sum = (sum+progress([il)]
19: proc 0 (:init::1) increment.spin:36 (state 16) [i = (i+1)]
20: proc 0 (:i : increment.spin:34 (state 14) [((i<2))]
20: proc 0 (:1) increment.spin:35 (state 15) [sum = (sum+progress[il)]
20: proc 0 (:init::1) increment.spin:36 (state 16) [i = (i+1)]
21: proc 0 (:init::1) increment.spin:37 (state 17) [((i>=2))]
22: proc 0 (:init::1) increment.spin:33 (state 21) [break]

spin: increment.spin:39, Error: assertion violated
spin: text of failed assertion: assert(((sum<2)||(counter==2)))
23: proc 0 (:init::1) increment.spin:39 (state 22) [assert(((sum<2)||(counter==2)))]
spin: trail ends after 23 steps
#processes: 1
counter = 1
progress[0] = 1
progress[1] = 1
23: proc 0 (:init::1) increment.spin:41 (state 24) <valid end state>
3 processes created

Listing 12.4: Promela Code for Atomic Increment

proctype incrementer(byte me)

1

2

3 int temp;

4

5 atomic {

6 temp = counter;

7 counter = temp + 1;
8 }

9 progress[me] = 1;

0 X

Listing 12.5: Atomic Increment Spin Output

(Spin Version 6.4.8 -- 2 March 2018)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 48 byte, depth reached 22, errors: 0
52 states, stored
21 states, matched
73 transitions (= stored+matched)
68 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.004 equivalent memory usage for states
(stored*(State-vector + overhead))
0.290 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

unreached in proctype incrementer
(0 of 5 states)

unreached in init
(0 of 24 states)

539

Table 12.1: Memory Usage of Increment Model

incrementers # states total memory usage (MB)
1 11 128.7
2 52 128.7
3 372 128.7
4 3,496 128.9
5 40,221 131.7
6 545,720 174.0
7 8,521,446 881.9

cc -DSAFETY [-DCOLLAPSE] [-DMA=N] -o pan pan.c
Compile the generated state-machine search. The -DSAFETY gener-
ates optimizations that are appropriate if you have only assertions
(and perhaps never statements). If you have liveness, fairness, or
forward-progress checks, you may need to compile without ~-DSAFETY.
If you leave off -DSAFETY when you could have used it, the program
will let you know.

The optimizations produced by -DSAFETY greatly speed things up,
so you should use it when you can. An example situation where
you cannot use -DSAFETY is when checking for livelocks (AKA
“non-progress cycles”) via -DNP.

The optional -DCOLLAPSE generates code for a state vector compres-
sion mode.

Another optional flag ~-DMA=N generates code for a slow but aggressive
state-space memory compression mode.

./pan [-mN] [-wN]
This actually searches the state space. The number of states can reach
into the tens of millions with very small state machines, so you will
need a machine with large memory. For example, qrcu. spin with
3 updaters and 2 readers required 10.5 GB of memory even with the
-DCOLLAPSE flag.

spin

540

If you see a message from ./pan saying: “error: max search
depth too small”, you need to increase the maximum depth by a
-mN option for a complete search. The default is -m10000.

The -wN option specifies the hashtable size. The default for full
state-space search is —w24.!

If you aren’t sure whether your machine has enough memory, run top
in one window and . /pan in another. Keep the focus on the . /pan
window so that you can quickly kill execution if need be. As soon as
CPU time drops much below 100 %, kill . /pan. If you have removed
focus from the window running . /pan, you may wait a long time for
the windowing system to grab enough memory to do anything for
you.

Another option to avoid memory exhaustion is the ~-DMEMLIM=N
compiler flag. -DMEMLIM=2000 would set the maximum of 2 GB.

Don’t forget to capture the output, especially if you are working on a
remote machine.

If your model includes forward-progress checks, you will likely need
to enable “weak fairness” via the -f command-line argument to
./pan. If your forward-progress checks involve accept labels, you
will also need the -a argument.

-t -p qrcu.spin

Given trail file output by a run that encountered an error, output
the sequence of steps leading to that error. The -g flag will also
include the values of changed global variables, and the -1 flag will
also include the values of changed local variables.

12.1.2.1 Promela Peculiarities

Although all computer languages have underlying similarities, Promela will
provide some surprises to people used to coding in C, C++, or Java.

I As of Spin Version 6.4.6 and 6.4.8. In the online manual of Spin dated 10 July 2011, the
default for exhaustive search mode is said to be -w19, which does not meet the actual behavior.

541

. In C, “;” terminates statements. In Promela it separates them.
Fortunately, more recent versions of Spin have become much more
forgiving of “extra” semicolons.

. Promela’s looping construct, the do statement, takes conditions. This
do statement closely resembles a looping if-then-else statement.

. In C’s switch statement, if there is no matching case, the whole
statement is skipped. In Promela’s equivalent, confusingly called if,
if there is no matching guard expression, you get an error without a
recognizable corresponding error message. So, if the error output
indicates an innocent line of code, check to see if you left out a
condition from an if or do statement.

. When creating stress tests in C, one usually races suspect operations
against each other repeatedly. In Promela, one instead sets up a single
race, because Promela will search out all the possible outcomes from
that single race. Sometimes you do need to loop in Promela, for
example, if multiple operations overlap, but doing so greatly increases
the size of your state space.

. In C, the easiest thing to do is to maintain a loop counter to track
progress and terminate the loop. In Promela, loop counters must
be avoided like the plague because they cause the state space to
explode. On the other hand, there is no penalty for infinite loops in
Promela as long as none of the variables monotonically increase or
decrease—Promela will figure out how many passes through the loop
really matter, and automatically prune execution beyond that point.

. In C torture-test code, it is often wise to keep per-task control variables.
They are cheap to read, and greatly aid in debugging the test code. In
Promela, per-task control variables should be used only when there is
no other alternative. To see this, consider a 5-task verification with
one bit each to indicate completion. This gives 32 states. In contrast,
a simple counter would have only six states, more than a five-fold
reduction. That factor of five might not seem like a problem, at least
not until you are struggling with a verification program possessing
more than 150 million states consuming more than 10 GB of memory!

542

7. One of the most challenging things both in C torture-test code and in
Promela is formulating good assertions. Promela also allows never
claims that act like an assertion replicated between every line of code.

8. Dividing and conquering is extremely helpful in Promela in keeping
the state space under control. Splitting a large model into two roughly
equal halves will result in the state space of each half being roughly
the square root of the whole. For example, a million-state combined
model might reduce to a pair of thousand-state models. Not only
will Promela handle the two smaller models much more quickly with
much less memory, but the two smaller algorithms are easier for
people to understand.

12.1.2.2 Promela Coding Tricks

Promela was designed to analyze protocols, so using it on parallel programs
is a bit abusive. The following tricks can help you to abuse Promela safely:

1. Memory reordering. Suppose you have a pair of statements copying
globals x and y to locals r1 and r2, where ordering matters (e.g.,
unprotected by locks), but where you have no memory barriers. This
can be modeled in Promela as follows:

if
it 1l =>rl =

=Yy
it 1l >1r2=y;
= X

[N

fi

The two branches of the if statement will be selected nondeterminis-
tically, since they both are available. Because the full state space is
searched, both choices will eventually be made in all cases.

Of course, this trick will cause your state space to explode if used too
heavily. In addition, it requires you to anticipate possible reorderings.

2. State reduction. If you have complex assertions, evaluate them under
atomic. After all, they are not part of the algorithm. One example of

(o)
B
@

Listing 12.6: Complex Promela Assertion

1 1= 0;

2 sum = 0;

3 do

4 :: i < N_QRCU_READERS ->

5 sum = sum + (readerstart[i] == 1 &&
6 readerprogress[i] == 1);
7 i+

8§ :: i >= N_QRCU_READERS ->

9 assert(sum == 0);

10 break

11 od

Listing 12.7: Atomic Block for Complex Promela Assertion

1 atomic {

2 i=0;

3 s = 0;

4 do

5 :: 1 < N_QRCU_READERS ->

6 sum = sum + (readerstart[i] == 1 &&
7 readerprogress[i] == 1);
8 i+t

9 :: 1 >= N_QRCU_READERS ->

10 assert(sum == 0);

11 break

12 od

13}

a complex assertion (to be discussed in more detail later) is as shown
in Listing 12.6.

There is no reason to evaluate this assertion non-atomically, since it is
not actually part of the algorithm. Because each statement contributes
to state, we can reduce the number of useless states by enclosing it in
an atomic block as shown in Listing 12.7.

3. Promela does not provide functions. You must instead use C pre-
processor macros. However, you must use them carefully in order to
avoid combinatorial explosion.

Now we are ready for further examples.

544

Listing 12.8: Promela Code for Spinlock

#define spin_lock(mutex) \

1
2 do \

3 :: 1 -> atomic { \

4 if \

5 :: mutex == 0 -> \

6 mutex = 1; \
7 break \

8 :: else -> skip \

9 fi \

10 A\

11 od

12
13 #define spin_unlock(mutex) \
14 mutex = 0

12.1.3 Promela Example: Locking

Since locks are generally useful, spin_lock() and spin_unlock()
macros are provided in lock.h, which may be included from multiple
Promela models, as shown in Listing 12.8. The spin_lock() macro
contains an infinite do-od loop spanning lines 2—11, courtesy of the single
guard expression of “1” on line 3. The body of this loop is a single atomic
block that contains an if-fi statement. The if-fi construct is similar to
the do-od construct, except that it takes a single pass rather than looping.
If the lock is not held on line 5, then line 6 acquires it and line 7 breaks out
of the enclosing do-od loop (and also exits the atomic block). On the other
hand, if the lock is already held on line 8, we do nothing (skip), and fall
out of the if-fi and the atomic block so as to take another pass through
the outer loop, repeating until the lock is available.

The spin_unlock() macro simply marks the lock as no longer held.

Note that memory barriers are not needed because Promela assumes full
ordering. In any given Promela state, all processes agree on both the current
state and the order of state changes that caused us to arrive at the current
state. This is analogous to the “sequentially consistent” memory model
used by a few computer systems (such as 1990s MIPS and PA-RISC). As
noted earlier, and as will be seen in a later example, weak memory ordering
must be explicitly coded.

(o)
()

Listing 12.9: Promela Code to Test Spinlocks

#include "lock.h"

#define N_LOCKERS 3

bit havelock [N_LOCKERS];

1

2

3

4

5 bit mutex = O;
6

7 int sum;

8

9

proctype locker(byte me)

10 {

11 do

12 1 >

13 spin_lock(mutex);

14 havelock[me] = 1;

15 havelock[me] = 0;

16 spin_unlock(mutex)

17 od

18}

19

2 init {

21 int i = 03

22 int j;

23

24 end: do

25 :: i < N_LOCKERS ->

26 havelock[i] = 0;

27 run locker(i);

28 i++

29 :: i >= N_LOCKERS ->

30 sum = 0;

31 j = 0;

32 atomic {

33 do

34 :: j < N_LOCKERS ->
35 sum = sum + havelock[j];
36 j=3j+1
37 :: j >= N_LOCKERS ->
38 break

39 od

40 ¥

41 assert(sum <= 1);

42 break

43 od

546

These macros are tested by the Promela code shown in Listing 12.9.
This code is similar to that used to test the increments, with the number
of locking processes defined by the N_LOCKERS macro definition on line 3.
The mutex itself is defined on line 5, an array to track the lock owner on
line 6, and line 7 is used by assertion code to verify that only one process
holds the lock.

The locker process is on lines 9—18, and simply loops forever acquiring
the lock on line 13, claiming it on line 14, unclaiming it on line 15, and
releasing it on line 16.

The init block on lines 20-44 initializes the current locker’s havelock
array entry on line 26, starts the current locker on line 27, and advances
to the next locker on line 28. Once all locker processes are spawned, the
do-od loop moves to line 29, which checks the assertion. Lines 30 and 31
initialize the control variables, lines 32—40 atomically sum the havelock
array entries, line 41 is the assertion, and line 42 exits the loop.

We can run this model by placing the two code fragments of Listings 12.8
and 12.9 into files named lock.h and lock.spin, respectively, and then
running the following commands:

spin -a lock.spin
cc -DSAFETY -o pan pan.c
./pan

The output will look something like that shown in Listing 12.10. As
expected, this run has no assertion failures (“errors: 07).

Quick Quiz 12.1: Why is there an unreached statement in locker? After all, isn’t
this a full state-space search? W

‘ Quick Quiz 12.2: What are some Promela code-style issues with this example?
|

12.1.4 Promela Example: QRCU

This final example demonstrates a real-world use of Promela on Oleg
Nesterov’s QRCU [NesO6a, NesO6b], but modified to speed up the
synchronize_qrcu() fastpath.

Listing 12.10: Output for Spinlock Test

(Spin Version 6.4.8 -- 2 March 2018)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 52 byte, depth reached 360, errors: 0
576 states, stored
929 states, matched
1505 transitions (= stored+matched)
368 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.044 equivalent memory usage for states
(storedx(State-vector + overhead))
0.288 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

unreached in proctype locker
lock.spin:19, state 20, "-end-"
(1 of 20 states)

unreached in init
(0 of 22 states)

But first, what is QRCU?

QRCU is a variant of SRCU [McKO06] that trades somewhat higher
read overhead (atomic increment and decrement on a global variable) for
extremely low grace-period latencies. If there are no readers, the grace
period will be detected in less than a microsecond, compared to the multi-
millisecond grace-period latencies of most other RCU implementations.

1. There is a qrcu_struct that defines a QRCU domain. Like SRCU
(and unlike other variants of RCU) QRCU’s action is not global, but
instead focused on the specified qrcu_struct.

2. There are qrcu_read_lock() and qrcu_read_unlock() primi-
tives that delimit QRCU read-side critical sections. The correspond-
ing gqrcu_struct must be passed into these primitives, and the

Listing 12.11: QRCU Global Variables

1
2
3
4
5
6
7
8
9

#include "lock.h"

#define N_QRCU_READERS 2
#define N_QRCU_UPDATERS 2

bit idx = 0O;

byte ctr[2];

byte readerprogress[N_QRCU_READERS] ;
bit mutex = 0;

return value from qrcu_read_lock() must be passed to qrcu_
read_unlock().

For example:

idx = qrcu_read_lock(&my_qrcu_struct);
/* read-side critical section. */
gqrcu_read_unlock(&my_qgrcu_struct, idx);

. There is a synchronize_qrcu() primitive that blocks until all pre-

existing QRCU read-side critical sections complete, but, like SRCU’s
synchronize_srcu(), QRCU’s synchronize_qgrcu() need wait
only for those read-side critical sections that are using the same
qrcu_struct.

For example, synchronize_qrcu(&your_qrcu_struct) would
not need to wait on the earlier QRCU read-side critical section. In
contrast, synchronize_qrcu(&my_qrcu_struct) would need to
wait, since it shares the same qrcu_struct.

A Linux-kernel patch for QRCU has been produced [McK07c], but is

unlikely to ever be included in the Linux kernel.

Returning to the Promela code for QRCU, the global variables are as

shown in Listing 12.11. This example uses locking and includes lock.h.
Both the number of readers and writers can be varied using the two #define
statements, giving us not one but two ways to create combinatorial explosion.
The idx variable controls which of the two elements of the ctr array will
be used by readers, and the readerprogress variable allows an assertion
to determine when all the readers are finished (since a QRCU update cannot

549

Listing 12.12: QRCU Reader Process

I proctype qrcu_reader(byte me)
2 {

3 int myidx;
4
5

do
6 1 >
7 myidx = idx;
8 atomic {
9 if
10 it ctrlmyidx] > 0 ->
11 ctr [myidx]++;
12 break
13 :: else -> skip
14 fi
15 }
16 od;
17 readerprogress[me] = 1;
18 readerprogress[me] = 2;
19 atomic { ctr[myidx]-- }

20 }

be permitted to complete until all pre-existing readers have completed their
QRCU read-side critical sections). The readerprogress array elements
have values as follows, indicating the state of the corresponding reader:

0: Not yet started.
1: Within QRCU read-side critical section.
2: Finished with QRCU read-side critical section.

Finally, the mutex variable is used to serialize updaters’ slowpaths.

QRCU readers are modeled by the qrcu_reader () process shown
in Listing 12.12. A do-od loop spans lines 5-16, with a single guard of
“1” on line 6 that makes it an infinite loop. Line 7 captures the current
value of the global index, and lines 8—15 atomically increment it (and
break from the infinite loop) if its value was non-zero (atomic_inc_not_
zero()). Line 17 marks entry into the RCU read-side critical section, and
line 18 marks exit from this critical section, both lines for the benefit of
the assert () statement that we shall encounter later. Line 19 atomically
decrements the same counter that we incremented, thereby exiting the RCU
read-side critical section.

Listing 12.13: QRCU Unordered Summation

#define sum_unordered \

1
2 atomic { \

3 do \

4 i1 >\

5 sum = ctr[0]; \
6 i=1;\

7 break \

8 r1 >\

9 sum = ctr[1]; \
10 i=0;\

1 break \

12 od; \

13 3\

14 sum = sum + ctr[i]

The C-preprocessor macro shown in Listing 12.13 sums the pair of
counters so as to emulate weak memory ordering. Lines 2—13 fetch one of the
counters, and line 14 fetches the other of the pair and sums them. The atomic
block consists of a single do—od statement. This do-od statement (spanning
lines 3—12) is unusual in that it contains two unconditional branches with
guards on lines 4 and 8, which causes Promela to non-deterministically
choose one of the two (but again, the full state-space search causes Promela
to eventually make all possible choices in each applicable situation). The
first branch fetches the zero-th counter and sets i to 1 (so that line 14 will
fetch the first counter), while the second branch does the opposite, fetching
the first counter and setting i to O (so that line 14 will fetch the second
counter).

Quick Quiz 12.3: s there a more straightforward way to code the do-od
statement? H

With the sum_unordered macro in place, we can now proceed to the
update-side process shown in Listing 12.14. The update-side process repeats
indefinitely, with the corresponding do-od loop ranging over lines 7-57.
Each pass through the loop first snapshots the global readerprogress
array into the local readerstart array on lines 12-21. This snapshot will
be used for the assertion on line 53. Line 23 invokes sum_unordered, and
then lines 24-27 re-invoke sum_unordered if the fastpath is potentially
usable.

W
[

Listing 12.14: QRCU Updater Process

proctype grcu_updater(byte me)
{

1
2

3 int i;

4 byte readerstart[N_QRCU_READERS];

5 int sum;

6

7 do

8 tr 1 >

9

10 /* Snapshot reader state. */

1

12 atomic {

13 i=20;

14 do

15 :: i < N_QRCU_READERS ->
16 readerstart[i] = readerprogress[il;
17 i+

18 :: i >= N_QRCU_READERS ->
19 break

20 od

21 }

2

23 sum_unordered;

24 if

25 :: sum <= 1 -> sum_unordered

26 :: else -> skip

27 fi;

28 if

29 :rosum > 1 >

30 spin_lock(mutex) ;

31 atomic { ctr[!idx]++ }

32 idx = l!idx;

33 atomic { ctr[!idx]-- }

34 do

35 ctr[!idx] > 0 -> skip
36 ctr[!idx] == 0 -> break
37 od;

38 spin_unlock(mutex) ;

39 :: else -> skip

40 fi;

41

2 /* Verify reader progress. */

43

44 atomic {

45 i=

46 sum

47 do

a8 :: i < N_QRCU_READERS ->
49 sum = sum + (readerstart[i] == 1 &&
50 readerprogress[i] == 1);
51 it

5 :: i >= N_QRCU_READERS ->
53 assert(sum == 0);
54 break

55 od

56 }

57 od

Listing 12.15: QRCU Initialization Process

1 init {

2 int i;

3

4 atomic {

5 ctrlidx] = 1;

6 ctr[!idx] = 0;

7 i=0;

8 do

9 :: i < N_QRCU_READERS ->

10 readerprogress[i] = 0;
11 run grcu_reader(i);

12 i++

13 :: i >= N_QRCU_READERS -> break
14 od;

15 i= 0;

16 do

17 :: 1 < N_QRCU_UPDATERS ->

18 run grcu_updater(i);
19 i+

20 :: i >= N_QRCU_UPDATERS -> break
21 od

2 ¥

23 }

Lines 28—-40 execute the slowpath code if need be, with lines 30 and 38
acquiring and releasing the update-side lock, lines 31-33 flipping the index,
and lines 3437 waiting for all pre-existing readers to complete.

Lines 44-56 then compare the current values in the readerprogress
array to those collected in the readerstart array, forcing an assertion
failure should any readers that started before this update still be in progress.

Quick Quiz 12.4: Why are there atomic blocks at lines 12-21 and lines 44-56,
when the operations within those atomic blocks have no atomic implementation
on any current production microprocessor? H

Quick Quiz 12.5: Is the re-summing of the counters on lines 24-27 really
necessary? Wl

All that remains is the initialization block shown in Listing 12.15. This
block simply initializes the counter pair on lines 5-6, spawns the reader
processes on lines 7-14, and spawns the updater processes on lines 15-21.
This is all done within an atomic block to reduce state space.

W
D
¥

Table 12.2: Memory Usage of QRCU Model

updaters readers # states depth memory (MB)?
1 1 376 95 128.7
1 2 6,177 218 128.9
1 3 99,728 385 132.6
2 1 29,399 859 129.8
2 2 1,071,181 2,352 169.6
2 3 33,866,736 12,857 1,540.8
3 1 2,749,453 53,809 236.6
3 2 186,202,860 328,014 10,483.7

2 Obtained with the compiler flag ~-DCOLLAPSE specified.

12.1.4.1 Running the QRCU Example

To run the QRCU example, combine the code fragments in the previous
section into a single file named qrcu.spin, and place the definitions for
spin_lock() and spin_unlock() into a file named lock.h. Then use
the following commands to build and run the QRCU model:

spin -a qrcu.spin
cc -DSAFETY [-DCOLLAPSE] -o pan pan.c
./pan [-mN]

The output shows that this model passes all of the cases shown in
Table 12.2. It would be nice to run three readers and three updaters, however,
simple extrapolation indicates that this will require about half a terabyte of
memory. What to do?

It turns out that . /pan gives advice when it runs out of memory, for
example, when attempting to run three readers and three updaters:

hint: to reduce memory, recompile with
-DCOLLAPSE # good, fast compression, or
-DMA=96 # better/slower compression, or
-DHC # hash-compaction, approximation
-DBITSTATE # supertrace, approximation

Table 12.3: QRCU Spin Result Summary

-DCOLLAPSE -DMA=N

updaters readers #states depthreached ~ -wN memory (MB) runtime (s) N memory (MB) runtime (s)
1 1 376 95 12 0.10 0.00 40 0.29 0.00
1 2 6,177 218 12 0.39 0.01 47 0.59 0.02
1 3 99,728 385 16 4.60 0.14 54 3.04 0.45
2 1 29,399 859 16 2.30 0.03 55 0.70 0.13
2 2 1,071,181 2,352 20 49.24 1.45 62 7.71 5.76
2 3 33,866,736 12,857 24 1,540.70 62.5 69 111.66 326
El 1 2,749,453 53,809 21 125%5) 4.01 70 11.41 195
3 2 186,202,860 328,014 28 10,482.51 390 77 222.26 2,560
3 3 9,664,707,100 2,055,621 84 5,557.02 266,000

Let’s try the suggested compiler flag -DMA=N, which generates code for
aggressive compression of the state space at the cost of greatly increased
search overhead. The required commands are as follows:

spin -a grcu.spin
cc -DSAFETY -DMA=96 -02 -o pan pan.c
./pan -m20000000

Here, the depth limit of 20,000,000 is an order of magnitude larger
than the expected depth deduced from simple extrapolation. Although
this increases up-front memory usage, it avoids wasting a long run due to
incomplete search resulting from a too-tight depth limit. This run took
a little more than 3 days on a POWERS9 server. The result is shown in
Listing 12.16. This Spin run completed successfully with a total memory
usage of only 6.5 GB, which is almost two orders of magnitude lower than
the -DCOLLAPSE usage of about half a terabyte.

Quick Quiz 12.6: A compression rate of 0.48 % corresponds to a 200-to-1
decrease in memory occupied by the states! Is the state-space search really
exhaustive??? W

For reference, Table 12.3 summarizes the Spin results with -DCOLLAPSE
and -DMA=N compiler flags. The memory usage is obtained with mini-
mal sufficient search depths and -DMA=N parameters shown in the table.
Hashtable sizes for -DCOLLAPSE runs are tweaked by the -wN option of
. /pan to avoid using too much memory hashing small state spaces. Hence
the memory usage is smaller than what is shown in Table 12.2, where

w

[

Listing 12.16: 3 Readers 3 Updaters QRCU Spin Output with ~-DMA=96

(Spin Version 6.4.6 -- 2 December 2016)
+ Partial Order Reduction
+ Graph Encoding (-DMA=96)

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 96 byte, depth reached 2055621, errors: O

MA stats: -DMA=84 is sufficient

Minimized Automaton: 56420520 nodes and 1.75128e+08 edges
9.6647071e+09 states, stored

9.7503813e+09 states, matched

1.9415088e+10 transitions (= stored+matched)

7.2047951e+09 atomic steps

Stats on memory usage (in Megabytes):

1142905.887 equivalent memory usage for states
(stored*(State-vector + overhead))
5448.879 actual memory usage for states
(compression: 0.48%)
1068.115 memory used for DFS stack (-m20000000)
1.619 memory lost to fragmentation
6515.375 total actual memory usage

unreached in proctype qrcu_reader
(0 of 18 states)

unreached in proctype qrcu_updater
grcu.spin:102, state 82, "-end-"
(1 of 82 states)

unreached in init
(0 of 23 states)

pan: elapsed time 2.72e+05 seconds
pan: rate 35500.523 states/second

556
the hashtable size starts from the default of -w24. The runtime is from a
POWERDO server, which shows that -DMA=N suffers up to about an order of
magnitude higher CPU overhead than does -DCOLLAPSE, but on the other
hand reduces memory overhead by well over an order of magnitude.
So far so good. But adding a few more updaters or readers would exhaust
memory, even with -DMA=N.?> So what to do? Here are some possible
approaches:

1. See whether a smaller number of readers and updaters suffice to prove
the general case.

2. Manually construct a proof of correctness.
3. Use a more capable tool.

4. Divide and conquer.

The following sections discuss each of these approaches.

12.1.4.2 How Many Readers and Updaters Are Really Needed?

One approach is to look carefully at the Promela code for qrcu_updater ()
and notice that the only global state change is happening under the lock.
Therefore, only one updater at a time can possibly be modifying state visible
to either readers or other updaters. This means that any sequences of state
changes can be carried out serially by a single updater due to the fact that
Promela does a full state-space search. Therefore, at most two updaters are
required: One to change state and a second to become confused.

The situation with the readers is less clear-cut, as each reader does only
a single read-side critical section then terminates. It is possible to argue
that the useful number of readers is limited, due to the fact that the fastpath
must see at most a zero and a one in the counters. This is a fruitful avenue
of investigation, in fact, it leads to the full proof of correctness described in
the next section.

2 Alternatively, the CPU consumption would become excessive.

12.1.4.3 Alternative Approach: Proof of Correctness

An informal proof [McKO07c] follows:

1.

For synchronize_grcu() to exit too early, then by definition there
must have been at least one reader present during synchronize_
grcu()’s full execution.

The counter corresponding to this reader will have been at least 1
during this time interval.

The synchronize_qgrcu() code forces at least one of the counters
to be at least 1 at all times.

The above two items imply that if the counter corresponding to this
reader is exactly one, then the other counter must be greater than or
equal to one. Similarly, if the other counter is equal to zero, then the
counter corresponding to the reader must be greater than or equal to
two.

Therefore, at any given point in time, either one of the counters will
be at least 2, or both of the counters will be at least one.

However, the synchronize_qrcu() fastpath code can read only one
of the counters at a given time. It is therefore possible for the fastpath
code to fetch the first counter while zero, but to race with a counter
flip so that the second counter is seen as one.

. There can be at most one reader persisting through such a race

condition, as otherwise the sum would be two or greater, which would
cause the updater to take the slowpath.

But if the race occurs on the fastpath’s first read of the counters, and
then again on its second read, there have to have been two counter
flips.

Because a given updater flips the counter only once, and because
the update-side lock prevents a pair of updaters from concurrently
flipping the counters, the only way that the fastpath code can race
with a flip twice is if the first updater completes.

558

10. But the first updater will not complete until after all pre-existing
readers have completed.

11. Therefore, if the fastpath races with a counter flip twice in succession,
all pre-existing readers must have completed, so that it is safe to take
the fastpath.

Of course, not all parallel algorithms have such simple proofs. In such
cases, it may be necessary to enlist more capable tools.

12.1.4.4 Alternative Approach: More Capable Tools

Although Promela and Spin are quite useful, much more capable tools
are available, particularly for verifying hardware. This means that if it is
possible to translate your algorithm to the hardware-design VHDL language,
as it often will be for low-level parallel algorithms, then it is possible to
apply these tools to your code (for example, this was done for the first
realtime RCU algorithm). However, such tools can be quite expensive.

Although the advent of commodity multiprocessing might eventually
result in powerful free-software model-checkers featuring fancy state-space-
reduction capabilities, this does not help much in the here and now.

As an aside, there are Spin features that support approximate searches
that require fixed amounts of memory, however, I have never been able to
bring myself to trust approximations when verifying parallel algorithms.

Another approach might be to divide and conquer.

12.1.4.5 Alternative Approach: Divide and Conquer

It is often possible to break down a larger parallel algorithm into smaller
pieces, which can then be proven separately. For example, a 10-billion-state
model might be broken into a pair of 100,000-state models. Taking this
approach not only makes it easier for tools such as Promela to verify your
algorithms, it can also make your algorithms easier to understand.

559
12.1.4.6 Is QRCU Really Correct?

Is QRCU really correct? We have a Promela-based mechanical proof and
a by-hand proof that both say that it is. However, a paper by Alglave et
al. [AKT13] says otherwise (see Section 5.1 of the paper at the bottom of
page 12). Which is it?

It turns out that both are correct! When QRCU was added to a suite
of formal-verification benchmarks, its memory barriers were omitted, thus
resulting in a buggy version of QRCU. So the real news here is that a
number of formal-verification tools incorrectly proved this buggy QRCU
correct. And this is why formal-verification tools themselves should be
tested using bug-injected versions of the code being verified. If a given tool
cannot find the injected bugs, then that tool is clearly untrustworthy.

Quick Quiz 12.7: But different formal-verification tools are often designed
to locate particular classes of bugs. For example, very few formal-verification
tools will find an error in the specification. So isn’t this “clearly untrustworthy”
judgment a bit harsh? W

Therefore, if you do intend to use QRCU, please take care. Its proofs of
correctness might or might not themselves be correct. Which is one reason
why formal verification is unlikely to completely replace testing, as Donald
Knuth pointed out so long ago.

Quick Quiz 12.8: Given that we have two independent proofs of correctness for
the QRCU algorithm described herein, and given that the proof of incorrectness
covers what is known to be a different algorithm, why is there any room for doubt?

12.1.5 Promela Parable: dynticks and Preemptible RCU

In early 2008, a preemptible variant of RCU was accepted into mainline
Linux in support of real-time workloads, a variant similar to the RCU
implementations in the -rt patchset [Mol05] since August 2005. Preemptible
RCU is needed for real-time workloads because older RCU implementations
disable preemption across RCU read-side critical sections, resulting in
excessive real-time latencies.

560

However, one disadvantage of the older -rt implementation was that each
grace period requires work to be done on each CPU, even if that CPU is
in a low-power “dynticks-idle” state, and thus incapable of executing RCU
read-side critical sections. The idea behind the dynticks-idle state is that idle
CPUs should be physically powered down in order to conserve energy. In
short, preemptible RCU can disable a valuable energy-conservation feature
of recent Linux kernels. Although Josh Triplett and Paul McKenney had
discussed some approaches for allowing CPUs to remain in low-power state
throughout an RCU grace period (thus preserving the Linux kernel’s ability
to conserve energy), matters did not come to a head until Steve Rostedt
integrated a new dyntick implementation with preemptible RCU in the -rt
patchset.

This combination caused one of Steve’s systems to hang on boot, so in Oc-
tober, Paul coded up a dynticks-friendly modification to preemptible RCU’s
grace-period processing. Steve coded up rcu_irq_enter() and rcu_
irq_exit () interfaces called from the irq_enter () and irq_exit()
interrupt entry/exit functions. These rcu_irq_enter () and rcu_irq_
exit () functions are needed to allow RCU to reliably handle situations
where a dynticks-idle CPU is momentarily powered up for an interrupt
handler containing RCU read-side critical sections. With these changes
in place, Steve’s system booted reliably, but Paul continued inspecting the
code periodically on the assumption that we could not possibly have gotten
the code right on the first try.

Paul reviewed the code repeatedly from October 2007 to February 2008,
and almost always found at least one bug. In one case, Paul even coded and
tested a fix before realizing that the bug was illusory, and in fact in all cases,
the “bug” turned out to be illusory.

Near the end of February, Paul grew tired of this game. He therefore
decided to enlist the aid of Promela and Spin. The following presents a
series of seven increasingly realistic Promela models, the last of which
passes, consuming about 40 GB of main memory for the state space.

More important, Promela and Spin did find a very subtle bug for me!

Quick Quiz 12.9: Yeah, that’s just great! Now, just what am I supposed to do if I
don’t happen to have a machine with 40 GB of main memory??? H

561

Still better would be to come up with a simpler and faster algorithm that
has a smaller state space. Even better would be an algorithm so simple that
its correctness was obvious to the casual observer!

Sections 12.1.5.1-12.1.5.4 give an overview of preemptible RCU’s
dynticks interface, followed by Section 12.1.6’s discussion of the validation
of the interface.

12.1.5.1 Introduction to Preemptible RCU and dynticks

The per-CPU dynticks_progress_counter variable is central to the
interface between dynticks and preemptible RCU. This variable has an even
value whenever the corresponding CPU is in dynticks-idle mode, and an
odd value otherwise. A CPU exits dynticks-idle mode for the following
three reasons:

1. To start running a task,

2. When entering the outermost of a possibly nested set of interrupt
handlers, and

3. When entering an NMI handler.

Preemptible RCU’s grace-period machinery samples the value of the
dynticks_progress_counter variable in order to determine when a
dynticks-idle CPU may safely be ignored.

The following three sections give an overview of the task interface, the
interrupt/NMI interface, and the use of the dynticks_progress_counter
variable by the grace-period machinery as of Linux kernel v2.6.25-rc4.

12.1.5.2 Task Interface

When a given CPU enters dynticks-idle mode because it has no more tasks
to run, it invokes rcu_enter_nohz():

| | static inline void rcu_enter_nohz(void)

2| {

3 mb();

4 __get_cpu_var(dynticks_progress_counter)++;

5 WARN_ON(__get_cpu_var (dynticks_progress_counter) &

562

6 0x1);

This function simply increments dynticks_progress_counter and
checks that the result is even, but first executing a memory barrier to ensure
that any other CPU that sees the new value of dynticks_progress_
counter will also see the completion of any prior RCU read-side critical
sections.

Similarly, when a CPU that is in dynticks-idle mode prepares to start
executing a newly runnable task, it invokes rcu_exit_nohz():

static inline void rcu_exit_nohz(void)

1

2| {

3 __get_cpu_var (dynticks_progress_counter)++;

4 mb();

5 WARN_ON(! (__get_cpu_var (dynticks_progress_counter) &
6 0x1));

71}

This function again increments dynticks_progress_counter, but
follows it with a memory barrier to ensure that if any other CPU sees the
result of any subsequent RCU read-side critical section, then that other CPU
will also see the incremented value of dynticks_progress_counter.
Finally, rcu_exit_nohz() checks that the result of the increment is an
odd value.

The rcu_enter_nohz() and rcu_exit_nohz () functions handle the
case where a CPU enters and exits dynticks-idle mode due to task execution,
but does not handle interrupts, which are covered in the following section.

12.1.5.3 Interrupt Interface

The rcu_irq_enter () and rcu_irq_exit () functions handle interrup-
t/NMI entry and exit, respectively. Of course, nested interrupts must also
be properly accounted for. The possibility of nested interrupts is handled
by a second per-CPU variable, rcu_update_flag, which is incremented
upon entry to an interrupt or NMI handler (in rcu_irq_enter()) and is
decremented upon exit (in rcu_irq_exit ()). In addition, the pre-existing

563

in_interrupt () primitive is used to distinguish between an outermost or
a nested interrupt/NMI.
Interrupt entry is handled by the rcu_irq_enter () shown below:

I | void rcu_irq_enter(void)

2 {

3 int cpu = smp_processor_id();

4

5 if (per_cpu(rcu_update_flag, cpu))

6 per_cpu(rcu_update_flag, cpu)++;
7 if (!in_interrupt() &&

8 (per_cpu(dynticks_progress_counter,
9 cpu) & 0x1) == 0) {

10 per_cpu(dynticks_progress_counter, cpu)++;
1 smp_mb () ;

12 per_cpu(rcu_update_flag, cpu)++;
13 }

14|}

Line 3 fetches the current CPU’s number, while lines 5 and 6 increment
the rcu_update_flag nesting counter if it is already non-zero. Lines 7-9
check to see whether we are the outermost level of interrupt, and, if so,
whether dynticks_progress_counter needs to be incremented. If so,
line 10 increments dynticks_progress_counter, line 11 executes a
memory barrier, and line 12 increments rcu_update_flag. As with
rcu_exit_nohz(), the memory barrier ensures that any other CPU that
sees the effects of an RCU read-side critical section in the interrupt handler
(following the rcu_irq_enter () invocation) will also see the increment
of dynticks_progress_counter.

Quick Quiz 12.10: Why not simply increment rcu_update_£f1lag, and then only
incrementdynticks_progress_counter if the old value of rcu_update_flag
was zero??? W

Quick Quiz 12.11: Butif line 7 finds that we are the outermost interrupt, wouldn’t
we always need to increment dynticks_pro